下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、教学准备1 .教学目标1、知识和技能:了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向 量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和 共线向量。2、过程和方法:通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别。3、情感态度和价值观:通过学生对向量和数量的识别能力的训练,培养学生认识客观事物的数学本质的能力。2 .教学重点/难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系3 .教学用具多媒体4 .标签平面向量的实际背景及基本概念教学过
2、程(一)导入新课思路1.(情境导入)如图1,在同一时刻,老鼠由A向西北方向的C处逃 窜,猫在B处向正东方向的D处追去,猫能否追到老鼠呢?学生马上得出结论:追 不上,猫的速度再快也没用,因为方向错了 .教师适时设问:如何从数学的角度来 揭示这个问题的本质?由此展开新课.(二)推进新课、新知探究、提出问题在物理课中,我们学过力的概念.请回顾一下力的三要素是什么?还有哪些量 和力具有同样特征呢?这些量的共同特征是什么?怎样利用你所学的数学中的知 识抽象这些具有共同特征的量呢?新的概念是对这些具有共同特征的量的描述,应怎样定义这样的量呢?数量和向量的区别在哪里?活动:教师指导学生阅读教材,思考讨论并解
3、决上述问题,学生讨论列举 和位移一样的一些量.物体受到的重力是竖直向下的,物体的质量越大,它受到的 重力越大;物体在液体中受到的浮力是竖直向上的 ,物体浸在液体中的体积越大 它受到的浮力就越大;速度和加速度都是既有大小 ,又有方向的量;物理中的动 量和冲量都有方向,且有大小;物理学中存在着许多既有大小,又有方向的量.教师引导学生观察思考这些量的共同特征,我们能否在数学学科中对这 些量加以抽象,形成一种新的量.至此时机成熟,引入向量,并把那些只有大小,没 有方向的量,如年龄、身高、长度、面积、体积、质量等称为数量 ,物理学上称 为标量.显然数量和向量的区别就在于方向问题.讨论结果:略.我们把既有
4、大小,又有方向的量叫做向量.物理中称为矢量.略.提出问题如何表小向量?有向线段和线段有何区别和联系?分别可以表示向量的什么 ?长度为零的向量叫什么向量?长度为 1的向量叫什么向量?满足什么条件的两个向量是相等向量?单位向量是相等向量吗 ?有一组向量,它们的方向相同或相反,这组向量有什么关系?怎样定义平行向 量?如果把一组平行向量的起点全部移到一点 。,它们是不是平行向量?这时各向 量的终点之间有什么关系? 数量和向量有什么区别?数学中的向量和物理中的力有什么区别 ?活动:教师指导学生阅读教材,通过阅读教材思考讨论以上问题.特别是 有向线段,是学习向量的关键.但不能说“向量就是有向线段,有向线段
5、就是向 量”,有向线段只是向量的一种几何表示,二者有本质的区别.向量只由方向和大 小决定,而和向量的起点的位置无关,但有向线段不仅和方向、长度有关,也和起 点的位置有关.如图2,在线段AB的两个端点中,规定一个顺序,假设A为起点、 B为终点,我们就说线段AB具有方向,具有方向的线段叫做有向线段,通常在有 向线段的终点处画上箭头表示它的方向.以A为起点、B为终点的有向线段记作 八II.起点要写在终点的前面.已知AB,线段AB的长度也叫做有向线段 AB的长度,记作I AB | .有向线段 包含三个要素:起点、方向、长度知道了有向线段的起点、方向和长度,它的终点就唯一确定.用有向线段表示向量的方法是
6、:10起点是A,终点是B的有向线段,对应的向量记作 施:.这里要提醒学生注意的方向是由点 A指向点B,点A是向量的起点.2用字母a,b,c,表示.(一定要学生规范书写:印刷用黑体a,书写用)3°向量(或a)的大小,就是向量(或a)的长度(或称模),记作|疝i |(或|a|).教师要注意引导学生将数量和向量的模进行比较 ,数量有大小而没有方向,其大 小有正、负和0之分,可进行运算,并可比较大小;向量的模是正数或0,也可以 比较大小.由于方向不能比较大小,像a>b就没有意义,而|a|>|b|有意义.讨论结果:向量也可用字母a,b,c,表示(印刷用粗黑体丑),手写用来表示, 或
7、用表示向量的有向线段的起点和终点字母表示,如方、丽.注意:手写体上面的箭头一定不能漏写.有向线段:具有方向的线段就叫做有向线段,具有三个要素:起点、方向、长度.向量和有向线段的区别:向量只有大小和方向两个要素,和起点无关,只要大小和 方向相同,则这两个向量就是相同的向量;有向线段有起点、大小和方向三个要长度为0的向量叫零向量,长度为1个单位长度的向量,叫单位向量.但要注意, 零向量、单位向量的定义都只是限制了大小.长度为0的向量叫做零向量,记作 0,规定零向量的方向是任意的.长度等于1个单位的向量,叫做单位向量.长度相等且方向相同的向量叫做相等向量.对平行向量定义的理解:第一,方向相同或相反的
8、非零向量叫平行向量;第二, 我们规定0和任一向量平行即0/a.综合第一、第二才是平行向量的完整定义; 向量a,b,c平行,记作a / b / c.如图3.图4又如图4,a,b,c是一组平行向量,任作一条和a所在直线0平行的直线 1,在l上任取一点O,则可在l上分别作出=a,=b,=c.这就是说,任一组平行向 量都可以移动到同一直线上,因此,平行向量也叫做共线向量.说明:平行向量可以在同一直线上,要区别于两平行线的位置关系.是共线向量,也就是平行向量.但要注意,平行向量就是共线向量,这是因为任 一组平行向量都可移到同一直线上(和有向线段的起点无关).平行向量可以在同 一直线上,要区别于两平行线的
9、位置关系;共线向量可以相互平行 ,要区别于在 同一直线上的线段的位置关系.数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、 大小双重性质,不能比较大小.力有大小、方向、作用点三个要素,而数学中的向量是由物理中的力抽象出来 的,只有大小和方向两个要素,和起点的位置无关.(三)使用示例例1如图5,试根据图中的比例尺以及三地的位置,在图中分别用有向线段表示A地至B、C两地的位移.(精确到1 km)a*.1匚nr而而分析:本例是一个简单的实际问题,要求画出有向线段表示位移,目的在于巩固向 量概念及其几何表示.解:;加表示A地至B地的位移,且|万| -232 km;(AB长度X 8
10、000 000+100 000)公表示A地至C地的位移,且| =296 km.(AC长度X 8 000 000+100 000) 点评:位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一 点的位置确定另外一点的位置.如图5,由A点确定B点、C点的位置.例2判断下列命题是否正确,若不正确,请简述理由.ABCm,方和函是共线向量;单位向量都相等.活动:教师引导学生画出平行四边形,如图7.因为AB/CD,所以商/而.由于上面已经明确,单位向量只限制了大 小,方向不确定,所以单位向量不一定相等,即单位向量模均相等且为1,但方向 不确定.解:(1)正确;不正确.课堂小结本节课从平面向量的
11、物理背景和几何背景入手,利用类比的方法,介绍了向量的 两种表示方法:几何表示和字母表示,几何表示为用向量处理几何问题打下了基 础,字母表示则利于向量的运算;然后又介绍了向量的模、平行向量、共线向量、相等向量等重要概念,这些概念是进一步学习后续课程的基础,必须要在理解的 基础上把握好.课后习题1.判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定) 和零向量相等的向量必定是什么向量?(零向量) 和任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗?(不一定)2 .把一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京市丰台区北宫镇社区卫生服务中心招聘3人一备考笔试题库及答案解析
- 2025中国瑞林工程技术股份有限公司市场化选聘财务总监1人(江西)模拟笔试试题及答案解析
- 2026年河北张家口经开区编办青年就业见习岗位招聘参考笔试题库附答案解析
- 2025天津海顺物业管理有限公司社会招聘2人参考笔试题库附答案解析
- 2026四川成都理工大学附属中学(成都树德中学领办学校)储备教师模拟笔试试题及答案解析
- 2025安徽六安市洁康环保医疗废物集中处置有限责任公司招聘工作人员1人考试备考题库及答案解析
- 2025重庆高新区西永街道招聘公益性岗位8人备考笔试题库及答案解析
- 2025下半年贵州遵义市市直事业单位选调56人模拟笔试试题及答案解析
- 职场维修合同范本
- 职称代理合同范本
- 2025贵阳人文科技学院教师招聘考试试题
- 高职院校产教融合共同体建设国内外研究动态及启示
- T/CWAN 0068-2023铜铝复合板
- 儿童寓言故事-乌鸦喝水
- 弱电系统维护中的安全和文明措施
- 紧急状态下护理人力资源调配
- 安全生产文明施工评价报告
- 眼科滴眼药水课件
- 2024-2025学年青海省西宁市七年级(上)期末英语试卷(含答案)
- 2025中级消防设施操作员作业考试题及答案(1000题)
- GB/T 18281.3-2024医疗保健产品灭菌生物指示物第3部分:湿热灭菌用生物指示物
评论
0/150
提交评论