付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、、填空题(每空1分,共15分)1、反馈控制又称偏差控制,其控制作用是通过给定值与反馈量的差值进行的。2、复合控制有两种基本形式:即按 输入的前馈复合控制和按 扰动的前馈复合控制。3、两个传递函数分别为 G(s)与G2(s)的环节,以并联方式连接,具等效传递函数为G(s),则 G(s)为 G1(s)+G2(s)(用 G(s)与 G 表示)。4、典型二阶系统极点分布如图1所示,则无阻尼自然频率 n 叵,-2阻尼比,0.7072该系统的特征方程为s2 2s 2 0 ,该系统的单位阶跃响应曲线为 衰减振荡。5、若某系统的单位脉冲响应为g(t) 10e02t 5e.5t,则该系统的传递函数G(s)为0
2、5。s 0.2s s 0.5s6、根轨迹起始于开环极点,终止于开环零点。7、设某最小相位系统的相频特性为()tg 1( ) 900 tg 1(T ),则该系统的开环传递K( s 1)函数为s(Ts D。人MuKpe3 e(t)dt8、PI控制器的输入一输出关系的时域表达式是 T,-1,,r ,、“一 ,K P1,八一上八一,一,、上心右一一,r其相应的传递函数为Ts ,由于积分环节的引入,可以改善系统的 稳态性能。1、在水箱水温控制系统中,受控对象为 水卷L,被控量为水温。2、自动控制系统有两种基本控制方式,当控制装置与受控对象之间只有顺向作用而无反向联系时,称为开环控制系统;当控制装置与受控
3、对象之间不但有顺向作用而且还有反向联 系时,称为闭环控制系统;含有测速发电机的电动机速度控制系统,属于闭环控制系统。3、稳定是对控制系统最基本的要求,若一个控制系统的响应曲线为衰减振荡,则该系统稳定。判断一个闭环线性控制系统是否稳定,在时域分析中采用劳斯判据;在频域分析中采用奈奎斯特判据。4、传递函数是指在 更初始条件下、线性定常控制系统的 输出拉氏变换与输入拉氏变换之比。K 12L15、设系统的开环传递函数为K2( s 1),则其开环幅频特性为2- 2 1 ,相频特性为s2(Ts 1)arctan 180o arctanT 。6、频域性能指标与时域性能指标有着对应关系,开环频域性能指标中的幅
4、值穿越频率c对应时域性能指标调整时间ts ,它们反映了系统动态过程的。1、对自动控制系统的基本要求可以概括为三个方面,即: 稳定性、快速性和准确性。2、控制系统的输出拉氏变换与输入拉氏变换在零初始条件下的比值称为传递函数。一阶12系统传函标准形式是G(s) ,二阶系统传函标准形式是 G(s) n。Ts 1s2 2 ns :3、在经典控制理论中,可采用劳斯判据、根轨迹法或奈奎斯特判据等方法判断线性控制系统稳定性。4、控制系统的数学模型,取决于系统 结擅和参数,与外作用及初始条件无关。5、线性系统的对数幅频特性,纵坐标取值为201g A(),横坐标为lg 。6、奈奎斯特稳定判据中,Z = P -
5、R ,其中P是指开环传函中具有正实部的极点的个数,Z是指闭环传函中具有正实部的极点的个数,R指奈氏曲线逆时针方向包围(-1, j0 ) 整置数。7、在二阶系统的单位阶跃响应图中,ts定义为调整时间。%是超调。8、PI控制规律的时域表达式是m(t) Kp&t) Kp t&t)dt。P I D控制规律的传递函数表 Ti 01达式是 Gc(s) Kp(1 一 s) o*9、设系统的开环传递函数为K,则其开环幅频特性为s(TiS 1)(T2s 1)A( ) -K ,相频特性为()900 tg 1 (Ti ) tg 15 )。1、对于自.(Ti )2 1 G )2 1动控制系统的性能要求可以概括为三个方
6、面,即: 稳定性、准确性 和快速性, 其中最基本的要求是稳定性。2、若某单位负反馈控制系统的前向传递函数为G(s),则该系统的开环传递函数为G(s)03、能表达控制系统各变量之间关系的数学表达式或表示方法,叫系统的数学模型,在古典控制理论中系统数学模型有 微分方程、传递函数等。4、判断一个闭环线性控制系统是否稳定, 可采用劳思判据、根轨迹、奈奎斯特判据等方法。5、设系统的开环传递函数为K,则其开环幅频特性为s(TiS 1)(T2s 1)相频特性为()900 tg 1(Ti ) tg 1(丁2 )。6、PID控制器的输入一输出关系的时域表达式是 m(t) Kpe(t) & t e(t)dt Kp
7、 幽,其 pTi0p dti相应的传递函数为 GC(s) Kp(1 s) o pIs7、最小相位系统是指S右半平面不存在系统的开环极点及开环零点。二、选择题(每题2分,共20分)1、采用负反馈形式连接后,则(D)A、一定能使闭环系统稳定;B 、系统动态性能一定会提高;G 一定能使干扰引起的误差逐渐减小,最后完全消除;D需要调整系统的结构参数,才能改善系统性能。2、下列哪种措施对提高系统的稳定性没有效果(A)A、增加开环极点;、在积分环节外加单位负反馈;、引入串联超前校正装置。3s 6 0,则系统( C)、单位阶跃响应曲线为单调指数上升;、右半平面闭环极点数Z 2 。ess,说明 ( A)、系统
8、不稳定;、闭环传递函数中有一个积分环节。C、增加开环零点;D3、系统特征方程为D(s) s3 2s2A、稳定;BC、临界稳定;D4、系统在r(t) t2作用下的稳态误差A、型别 v 2;BC、输入幅值过大;D5、对于以下情况应绘制0根轨迹的是( D)A主反馈口符号为“ - ; B、除Kr外的其他参数变化时;C、非单位反馈系统;D 、根轨迹方程(标准形式)为G(s)H(s) 1。6、开环频域性能指标中的相角裕度对应时域性能指标(A) 。A、超调 % B 、稳态误差essC、调整时间ts D 、峰值时间tp7、已知开环幅频特性如2 所示, 则中不稳定的系统是( B) 。心二。十系统系统系统A、系统
9、B、系统 C 、系统D 、都不稳定8、若某最小相位系统的相角裕度0,则下列说法正确的是(。A、不稳定;B、只有当幅值裕度kg 1时才稳定;G稳定;D、不能判用相角裕度判断系统的稳定性。9、若某串联校正装置的传递函数为晋U,则该校正装置属于出超前校正C 、滞后-超前校正D 、不能判断10、下列串联校正装置的传递函数中,能在c 1处提供最大相位超前角的是(B):八 10s 110sle2s 10.1s 1A、B、C 、D 、s 10.1s 10.5s 110s 11、关于传递函数,错误的说法是(B)A传递函数只适用于线性定常系统;B传递函数不仅取决于系统的结构参数,给定输入和扰动对传递函数也有影响
10、C传递函数一般是为复变量s的真分式;D闭环传递函数的极点决定了系统的稳定性。2、下列哪种措施对改善系统的精度没有效果(C) oA、增加积分环节B、提高系统的开环增益 KG增加微分环节D、引入扰动补偿3、高阶系统的主导闭环极点越靠近虚轴,则系统的 (D)。A、准确度越高B 、准确度越低G响应速度越快D响应速度越慢4、已知系统的开环传递函数为 50,则该系统的开环增益为(C)。(2 s 1)(s 5)A、50 B 、25C、10D 、55、若某系统的根轨迹有两个起点位于原点,则说明该系统(B)。A、含两个理想微分环节B、含两个积分环节G位置误差系数为0D、速度误差系数为06、开环频域性能指标中的相
11、角裕度对应时域性能指标(A)。A、超调 % B 、稳态误差ess C、调整时间ts D 、峰值时间tp7、已知某些系统的开环传递函数如下,属于最小相位系统的是 (B)a、K(2-JLb、K(LJ) c 、2Kd 、s(s 1)s(s 5)s(s s 1)s(2 s)8、若系统增加合适的开环零点,则下列说法不正确的是(B) oA、可改善系统的快速性及平稳性;B、会增加系统的信噪比;G会使系统白根轨迹向s平面的左方弯曲或移动;D、可增加系统的稳定裕度。9、开环对数幅频特性的低频段决定了系统的(A)。A、稳态精度 B 、稳定裕度C 、抗干扰性能 D、快速性10、下列系统中属于不稳定的系统是(D)。A
12、、闭环极点为s,21 j2的系统 B、闭环特征方程为s2 2s 1 0的系统G阶跃响应为c(t) 20(1 e0.4t)的系统 D脉冲响应为h(t) 8e0.4t的系统1、关于线性系统稳态误差,正确的说法是:(。A、一型系统在跟踪斜坡输入信号时无误差;B、稳态误差计算的通用公式是esslims2R;s 01 G(s)H(s)G增大系统开环增益K可以减小稳态误差;D增加积分环节可以消除稳态误差,而且不会影响系统稳定性。2、适合应用传递函数描述的系统是 (A。A、单输入,单输出的线性定常系统;B、单输入,单输出的线性时变系统;G单输入,单输出的定常系统;D非线性系统。53、若某负反馈控制系统的开环
13、传递函数为王九,则该系统的闭环特征方程为(B)。A s(s 1) 0B、 s(s 1) 5 0C、s(s 1) 1 0D 、与是否为单位反馈系统有关4、非单位负反馈系统,其前向通道传递函数为G(S),反馈通道传递函数为 H(S),当输入信号为R(S),则从输入端定义的误差E(S)为(D)A E(S) R(S) G(S)B、E(S) R(S) G(S) H (S)C、E(S) R(S) G(S) H(S)D E(S) R(S) G(S)H(S)5、已知下列负反馈系统的开环传递函数,应画零度根轨迹的是(A)。* * * *A K (2 s)KcKK (1 s)A B 、 C 、-2 D 、-s(s
14、 1)s(s 1)(s 5)s(s -3s 1)s(2 s)6、闭环系统的动态性能主要取决于开环对数幅频特性的(D):A、低频段 B 、开环增益C 、高频段D中频段7、已知单位反馈系统的开环传递函数为G(s) 2 10(2S 1) -,当输入信号是 s2(s2 6s 100)r(t) 2 2t t2时,系统的稳态误差是(D)A、 0; B 、8;C 、10;D 208、关于系统零极点位置对系统性能的影响,下列观点中正确的是(A)A、如果闭环极点全部位于S左半平面,则系统一定是稳定的。稳定性与闭环零点位置无关;B、 如果闭环系统无零点,且闭环极点均为负实数极点,则时间响应一定是衰减振荡的;C、超
15、调量仅取决于闭环复数主导极点的衰减率,与其它零极点位置无关;D、如果系统有开环极点处于 S右半平面,则系统不稳定。1、关于奈氏判据及其辅助函数 F(s尸1 + G(s)H(s),错误的说法是(A)A、 F(s)的零点就是开环传递函数的极点B、F(s)的极点就是开环传递函数的极点G F(s)的零点数与极点数相同D F(s)的零点就是闭环传递函数的极点2、已知负反馈系统的开环传递函数为G(s) 2 2s 1一,则该系统的闭环特征方程为s 6s 100(B)。 22A、s 6s 100 0B、 (s 6s 100) (2s 1) 0C、s2 6s 100 1 0D 、与是否为单位反馈系统有关3、一阶
16、系统的闭环极点越靠近 S平面原点,则(D)。A、准确度越高B 、准确度越低 C、响应速度越快D响应速度越慢4、已知系统的开环传递函数为100,则该系统的开环增益为(C)。(0.1s 1)(s 5)A、100 B 、1000C、20 D 、不能确定5、若两个系统的根轨迹相同,则有相同的(。:A、闭环零点和极点 B 、开环零点G闭环极点 D 、阶跃响应6、下列串联校正装置的传递函数中,能在c 1处提供最大相位超前角的是(B)。八 10s 110sle2s 10.1s 1A、B、C 、D 、s 10.1s 10.5s 110s 17、关于P I控制器作用,下列观点正确的有(A)A、可使系统开环传函的
17、型别提高,消除或减小稳态误差;B、积分部分主要是用来改善系统动态性能的;C、比例系数无论正负、大小如何变化,都不会影响系统稳定性;D只要应用P I控制规律,系统的稳态误差就为零。8、关于线性系统稳定性的判定,下列观点正确的是(。A、线性系统稳定的充分必要条件是:系统闭环特征方程的各项系数都为正数;B、无论是开环极点或是闭环极点处于右半 S平面,系统不稳定;G如果系统闭环系统特征方程某项系数为负数,系统不稳定;D当系统的相角裕度大于零,幅值裕度大于 1时,系统不稳定。9、关于系统频域校正,下列观点错误的是(。A 一个设计良好的系统,相角裕度应为 45度左右;B、开环频率特性,在中频段对数幅频特性
18、斜率应为20dB/dec;G低频段,系统的开环增益主要由系统动态性能要求决定;D利用超前网络进行串联校正,是利用超前网络的相角超前特性。10、已知单位反馈系统的开环传递函数为G(s) 2 1产 1),当输入信号是 s (s 6s 100)r(t) 2 2t t2时,系统的稳态误差是(D)A、0 B 、 oo C 、10D、20三、(8分)试建立如图3所示电路的动态微分方程,并求传递函数。解:1、建立电路的动态微分方程根据 KCL有ui(t) uo(t) C dUi uo(t)Uo(t)Ri即 REzCd0 (RiR2)u0(t)dtdui (t)Ri R2CdtR2%(t)2、求传递函数对微分
19、方程进行拉氏变换得得传递函数G(s) URi RzCs R2Ri R2Cs Ri R2、(8分)写出下图所示系统的传递函数 (结构图化简,梅逊公式均可)R(s)nP i解:传递函数G(s):根据梅逊公式G(s)需R(s)4条回路:L1G2(s)G3(s)H(s),L2G4(s)H(s),Gi(s)G2(s)G3(s),L4Gi(s)G4(s)无互不接触回路。特征式:4i Li i G2(s)G3(s)H(s) G4(s)H(s) i iGi(s)G2(s)G3(s) Gi(s)G4(s)2条前向通道:Pi Gi(s)G2(s)G3(s),三、(i6分)已知系统的结构如图i所示,其中G(s)i5
20、U,输入信号为单位斜坡函数,求系统的稳态误差(8分)。分析能否通过调节增益k,使稳态误差小于0.2 (8分)解:I型系统在跟踪单位斜坡输入信号时,稳态误差为1KV而静态速度误差系数Kv lim s G(s)H (s) lim sK(0.5s1) Ks 0s 0 s(s 1)(2s 1)稳态误差为1KV1。K要使ess0.2必须i 一 一 .一 5 ,即K要大于5。0.2但其上限要符合系统稳定性要求。可由劳斯判据决定其上限。系统的闭环特征方程是D(s) s(s 1)(2s 1) 0.5Ks K 2s3 3s2 (1 0.5K)s K 0构造劳斯表如下s321 0.5Ks23K3 0.5K3K为使
21、首列大于0, 必须 0 K 6综合稳态误差和才I定性要求,当 5 K 6时能保证稳态误差小于0.2。三、写出下图所示系统的传递函数 C到 (结构图化简,梅逊公式均可)。R(s) n 、 Ri解:传递函数G(s):根据梅逊公式 G(s) . 小一(2分)R(s)L3G3(s)H3(s)(1 分)3 条回路:L1G1(s)H1(s), L2G2(s)H2(s),1对互不接触回路:L1L3 Gi(s)Hi(s)G3(s)H3(s)(1分)31LiL1L3i 11 G1(s)H1(s) G2(s)H2(s)G3(s)H3(s) G1 (s)Hi(s)G3(s)H3(s) (2 分)1条前向通道:P G
22、(s)G2(s)G3(s),(2分)(2分)四、(共20分)系统结构图如图4所示:现到区国1、写出闭环传递函数 (s) C) 表达式;(4分)R(s)2、要使系统满足条件:0.707 , n 2,试确定相应的参数K和;(4分)3、求此时系统的动态性能指标, ts; (4分)4、r(t) 2t时,求系统由r(t)产生的稳态误差ess; (4分)5、确定Gn(s),使干扰n(t)对系统输出c(t)无影响。(4分)解:1、(4分)(s)C(s)R(s) 1K2 sKK2 s2n2s 2 ns n2、(4分)2242 240.7073、(4分)4.32004、(4分)G(s)K2 sKK s(s1s(
23、s 1)Kkv5、(4分)令:(s)C(s)N(s)1-Gn(s) s(s)得:Gn(s)四、(共20分)设系统闭环传递函数Rs)T2s2 2 Ts 11、0.2;0.08s ;0.8; T0.08s时单位阶跃响应的超调量%、调节时间ts及峰值时间tp p(7分)2、0.4;T 0.04s 和0.4; T0.16s时单位阶跃响应的超调量%、调节时间ts和峰值时间tp p(7分)3、根据计算结果,讨论参数、T对阶跃响应的影响。(6分)解:系统的闭环传函的标准形式为:(s)2 22T2s2 2 Ts 1 s2 2 ns1、0.2T 0.08s时,% etsntp 一d4T2、e 0.2 仆4 0.
24、080.20.2252.7%1.6s/ 1 20.8 / 1 0.82% ee1.5%T 0.08s 时0.4T 0.04s时,0.40.16s时,(4分)0.26ststp4 4T 4 0.08 八, 0.4sn0.8T 0.08(3分)0.42s0.4 / 10.4225.4%ts4T4 0.040.40.4s(4分)tpnT0.04 八 , 0.14s0.42% e / 厂 e 0.4 / 1 0.4225.4%tstp4 4T 4 0.16 , C 1.6sn0.4T 0.16d n .1212.10.42(3分)0.55s3、根据计算结果,讨论参数、T对阶跃响应的影响。(6分)(1)
25、系统超调只与阻尼系数有关,而与时间常数T无关,增大,超调%减小;(2分)(2)当时间常数T一定,阻尼系数 增大,调整时间ts减小,即暂态过程缩短;峰值时间tp增加,即初始响应速度变慢;(2分)(3)当阻尼系数 一定,时间常数T增大,调整时间ts增加,即暂态过程变长;峰值时间tp增加,即初始响应速度也变慢。(2分)四、(16分)设负反馈系统如图2 ,前向通道传递函数为G(s)若采用测速负反s(s 2)馈H(s) 1 kss,试画出以ks为参变量的根轨迹(10分),并讨论ks大小对系统性能的影响(6分)解:系统的开环传函T1 k,s),其闭环特征多项式为 s-2rD(s)2D(s) s 2s 10
26、kss 10 0, (1分)以不含ks的各项和除万程两边,得*-ss1 ,令 10ks K* ,得到等效开环传函为 1(2分)s2 2s 10s2 2s 10参数根轨迹,起点:P1,21 j3,终点:有限零点乙0,无穷零点(2分)实轴上根轨迹分布:一0(2分)2实轴上根轨迹的分离点:令 -s 2s 100,得ds s合理的分离点是 而 3.16, (2分)该分离点对应的根轨迹增益为*Kis2 2s 10_ 4.33,对应的速度反馈时间常数s 10ks*KL 0.433 (1 分)10根轨迹有一根与负实轴重合的渐近线。由于开环传函两个极点R,21 j3, 一个有限零点zi0且零点不在两极点之间,
27、故根轨迹为以零点 乙0为圆心,以该圆心到分离点距离为半径的 圆周。根轨迹与虚轴无交点,均处于 s左半平面。系统绝对稳定。根轨迹如图 1所示。(4分)讨论ks大小对系统性能的影响如下:(1)、当 0 ks 0.433时,系统为欠阻尼状态。根轨迹处在第二、三象限,闭环极点为共腕的复数极点。系统阻尼比随着ks由零逐渐增大而增加。动态响应为阻尼振荡过程,ks3 5增加将使振荡频率 d减小(d nJ),但响应速度加快,调节时间缩短(ts )。n(1分)(2)、当ks 0.433时(此时K4.33),为临界阻尼状态,动态过程不再有振荡和超调。(1分)(3)、当ks 0.433(或 4.33),为过阻尼状态
28、。系统响应为单调变化过程。(1分)图1四题系统参数根轨迹四、(共15分)已知某单位反馈系统的闭环根轨迹图如下图所示1、写出该系统以根轨迹增益 K*为变量的开环传递函数;(7分)2、求出分离点坐标,并写出该系统临界阻尼时的闭环传递函数。(8分)1、写出该系统以根轨迹增益K*为变量的开环传递函数;(7分)2、求出分离点坐标,并写出该系统临界阻尼时的闭环传递函数。(8分)解:1、由图可以看出,系统有1个开环零点为:1(1分);有2个开环极点为:0、-2 (1分),而且为零度根轨迹。由此可得以根轨迹增益K*为变量的开环传函K*(1 s)s(s 2)分)2、求分离点坐标d10.732, d2 2.732
29、(2分)(2分)分别对应的根轨迹增益为K11.15, K2 7.46分离点&为临界阻尼点,d2为不稳定点单位反馈系统在di (临界阻尼点)对应的闭环传递函数为,K*(1 s)G(s) s(s 2)K*(1 s)1.15(s 1)(4分)1 G(s) 1 K*(1 s) s(s 2) K*(1 s)s2 0.85s 1.15 s(s 2)五、(共15分)已知某单位反馈系统的开环传递函数为G(s) r 2s(s 3)1、绘制该系统以根轨迹增益 Kr为变量的根轨迹(求出:渐近线、分离点、与虚轴的交点等);(8分)2、确定使系统满足01的开环增益K的取值范围。(7分)1、绘制根轨迹 (8分)(1)系统
30、有有3个开环极点(起点):0、-3、-3,无开环零点(有限终点);(1分)实轴上的轨迹:(-8, -3)及(-3,0);(1分)(3) 3条渐近线:a360 ,2 (2 分)180(4)分离点:得:d 1(2分)(5)与虚轴交点:D(s)32s 6s9s Kr 0Im D(j )ReD(j )63 92 Kr3Kr 54(2分)绘制根轨迹如右图所示Kr2、(7分)开环增益K与根轨迹增益Kr的关系:G(s)Kr2s(s 3)292ss -3得 K Kr 9(1 分)系统稳定时根轨迹增益 K的取值范围:Kr 54,(2分)系统稳定且为欠阻尼状态时根轨迹增益 K的取值范围:4 Kr 54,(3分)系
31、统稳定且为欠阻尼状态时开环增益 K的取值范围:4 K 6(1分)9五、(共15分)已知某单位反馈系统的开环传递函数为 G(S)H(S) Kr(S月 试:s(s 3)1、绘制该系统以根轨迹增益 K为变量的根轨迹(求出:分离点、与虚轴的交点等);(8分) 2、求系统稳定且为欠阻尼状态时开环增益 K的取值范围。(7分) (1)系统有有2个开环极点(起点):0、3, 1个开环零点(终点)为:-1 ; (2分实轴上的轨迹:(-8, -1)及(0, 3);(2分) (3)求分离点坐标(2分)111 ,行d11,d23 ;d 1 d d 3分别对应的根轨迹增益为Kr 1, Kr 9(4)求与虚轴的交点系统的
32、闭环特征方程为s(s 3) Kr(S 1) 0,即s2 (Kr 3)S Kr 0 令 s2 (Kr 3)s Kr s j 0,得33, Kr 3(2 分)根轨迹如图1所示。2、求系统稳定且为欠阻尼状态时开环增益K的取值范围系统稳定时根轨迹增益 K的取值范围:Kr 3,(2分)(3分)开环增益K与根轨迹增益K的关系:K K3(1分)系统稳定且为欠阻尼状态时根轨迹增益 K的取值范围:Kr 3 9 ,(1分)系统稳定且为欠阻尼状态时开环增益 K的取值范围:K 13五、已知系统开环传递函数为G(s)H(s) k(1s),k, ,T均大于0 ,试用奈奎斯特稳定判 s(Ts 1)据判断系统稳定性。(16分
33、)第五题、第六题可任选其一解:由题已知:G(s)H(s)系统的开环频率特性为G(j )H(j )(2分)K (T )j(1 T 2)(1 T2 2)开环频率特性极坐标图起点:0 , A(0 ), (0 )900 ; (1 分)图2五题幅相曲线终点:,A( ) 0, ( )270; (1 分)与实轴的交点:令虚频特性为零,即 1 T实部 G(j x)H(j x) K (2 分)开环极坐标图如图2所示。(4分)由于开环传函无右半平面的极点,则 P 0当 K 1时,极坐标图不包围(1, j0 )点,系统稳定。(1分)当 K 1时,极坐标图穿过临界点j0 )点,系统临界稳定。(1分)1时,极坐标图顺时
34、针方向包围j0 )点一圈。按奈氏判据,Z= P N= 2。系统不稳定。(2分)闭环有两个右平面的极点(12 分)五、系统结构如下图所示,求系统的超调量和调节时间ts25s(s 5) 角洞(曲图可得系务的开环传函日:C(sG(s)因为该系统为单位负反馈系统,则系统的闭环传递函数为,与二阶系统的标准形式2 nnsn 552解得0.55所以e 0.5 / 1 0.516.3%1.2s(2分)t aLsn 0.5 5或ts40.5 5“ x 3.53.51.6s, ts n 0.5 51.4s, ts4.54.5. o1.8s0.5 5六、(共22分)某最小相位系统的开环对数幅频特性曲线Lo()如图5
35、所示:1、写出该系统的开环传递函数 G0(s); (8分)2、写出该系统的开环频率特性、开环幅频特性及开环相频特性。(3分)3、求系统的相角裕度 。(7分)4、若系统的稳定裕度不够大,可以采用什么措施提高系统的稳定裕度? (4分)解:1、从开环波特图可知,原系统具有比例环节、一个积分环节、两个惯性环节 K故其开环传函应有以下形式G(s) K (2分)s(s 1)(s 1)12由图可知:1处的纵坐标为40dB,则L(1) 20lg K 40,得K 100(2分)i 10和 2 = 100(2 分)(2分)故系统的开环传函为G0(s) 100sss 1 1101002、写出该系统的开环频率特性、开
36、环幅频特性及开环相频特性:开环频率特性G0(j )100(1分)j j 1 j110100开环幅频特性冬()100221011, 1001(1分)开环相频特性:0(s)90o tg 10.1 tg 10.01(1分)3、求系统的相角裕度求幅值穿越频率,令A0()1001021100c 31.6rad / s (3 分)(2分)0( c)90o tg 10.1 c tg 10.01 c 90o tg 13.16 tg 10.316180o180o0( c) 180o 180o 0(2 分)对最小相位系统0o临界稳定4、(4分)可以采用以下措施提高系统的稳定裕度:增加串联超前校正装置;增加串联滞后
37、校正装置;增加串联滞后-超前校正装置;增加开环零点;增加 PI或PD或PID控制器;在积分环节外加单位负反馈。六、(共22分)已知反馈系统的开环传递函数为 G(s)H(s) -,试:s(s 1)1、用奈奎斯特判据判断系统的稳定性;(10分)2、若给定输入=2t +2时,要求系统的稳态误差为 0.25,问开环增益K应取何值。(7分)3、求系统满足上面要求的相角裕度。(5分)解:1、系统的开环频率特性为G(j)H(j) j (1 j )(2分).K_幅频特性:A()q ,相频特性:()90 arctan(2分)起点:0 , A(0 ), (0 )900 ;(1 分)终点:,A( ) 0, ( )1
38、80; (1 分)0: ( )90 180,曲线位于第3象限与实轴无交点。(1分)开环频率幅相特性图如图2所示判断稳定性:开环传函无右半平面的极点,则 P 0 ,极坐标图不包围(一1, j0)点,则N 0根据奈氏判据,Z= P 2N= 0系统稳定。(3分)2、若给定输入r(t) = 2t +2时,要求系统的稳态误差为0.25,求开环增益K:系统为1型,位置误差系数Kp=8,速度误差系数Kv=K ,(2分)AA2依题意:ess0.25, (3 分)KvKK得K 8(2分)故满足稳态误差要求的开环传递函数为G(s)H (s) 8s(s 1)3、满足稳态误差要求系统的相角裕度:8, 一,令幅频特性:
39、A( )R2 1,得c 2.7,(2分)(c)90o arctan c 90o arctan 2.71600,(1 分)相角裕度180o ( c) 180o 160o 20o(2分)六、已知最小相位系统白对数幅频特性如图 3所示。试求系统的开环传递函数。(16分)解:从开环波特图可知,系统具有比例环节、两个积分环节、一个一阶微分环节和一个惯性环节。故其开环传函应有以下形式1K(s 1)G(s) 1 s2(s 1)2(8分)由图可知:1处的纵坐标为40dB, 则L(1) 20lg K 40, 得 K 100 (2 分)又由1和=10的幅值分贝数分别为20和0,结合斜率定义,有1 40,解得1 而
40、 3.16 rad/s (2 分)同理可得 20 ( 10)20lg 1 lg 220lg 3011 1000 2 10000 得100 rad/s (2 分)故所求系统开环传递函数为100(G(s)扁1)s2(s1001)(2分)Lc()如下图所示,原系统的幅值穿越频率为c 24.3rad / s :(共 30 分)六、已知最小相位系统的开环对数幅频特性 L0()和串联校正装置的对数幅频特性(10 分)写出原系统的开环传递函数G0(s),并求其相角裕度,判断系统的稳定性;写出校正装置的传递函数Gc(s); (5分)3、写出校正后的开环传递函数 G0(s)Gc(s),画出校正后系统的开环对数幅频特性并用劳斯判据判断系统的稳定性。(15分)1处的纵坐标为40dB, 则L(1) 20lg K 40, 得 K 100 (2由图可知:分)故原系统的开环传函为G(s)吟s(s 1)(s 1)1020100s(0.1s 1)(0.05s 1)(2分)求原系统的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院后勤培训管理制度
- 压缩机装配调试工安全生产能力考核试卷含答案
- 发电厂发电机检修工安全行为知识考核试卷含答案
- 公务员祭祖请假条
- 2025年观光型酒店项目合作计划书
- 2025年医用中心供氧设备项目发展计划
- 狂犬病防控知识培训课件
- 2025年净零进展报告
- 玻尿酸培训课件2021
- 教师交流任教个人工作总结
- 2025至2030外周静脉血栓切除装置行业调研及市场前景预测评估报告
- DB34∕T 5176-2025 城市轨道交通智能运维系统建设指南
- 2025年贵州省凯里市辅警考试真题及答案
- 2026年全国烟花爆竹经营单位主要负责人考试题库(含答案)
- 2026年人力资源共享服务中心建设方案
- JJG(交通) 141-2017 沥青路面无核密度仪
- DGTJ08-2198-2019 装配式建筑评价标准
- 2026年中国前列腺电切镜项目经营分析报告
- 2025年国家开放大学《社会研究方法》期末考试复习试题及答案解析
- 几何形体结构素描教案
- 2025金华市轨道交通控股集团运营有限公司应届生招聘170人考试笔试备考试题及答案解析
评论
0/150
提交评论