版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、51 纯弯曲纯弯曲52 纯弯曲时的正应力纯弯曲时的正应力53 横力弯曲时的正应力横力弯曲时的正应力54 弯曲弯曲切应力切应力56 提高弯曲强度的措施提高弯曲强度的措施第五章第五章 弯曲应力弯曲应力内力剪力FS弯矩M51 纯弯曲纯弯曲MFS 纯弯曲: FS =0 , M0正应力 切应力 横力弯曲: FS 0, M0AB段纯弯曲段纯弯曲(Pure Bending):FFaaABFSx+FFMx+F a纵向对称面纵向对称面F1F2平面弯曲平面弯曲52 纯弯曲时的正应力纯弯曲时的正应力一、一、 纯弯曲时梁横截面上的正应力纯弯曲时梁横截面上的正应力1.梁的纯弯曲实验 横向线(mn、mn)变形后仍为直线,
2、但有转动;纵向线变为曲线,横向线与纵向线变形后仍正交。变形几何规律:变形几何规律:bnamabnmababMMnmnm横截面变形后仍为平面。横截面变形后仍为平面。2. .平面假设:平面假设:bnamabnmababMMnmnm设想梁由无数根平行于轴设想梁由无数根平行于轴线的纵向纤维组成,变形线的纵向纤维组成,变形后,上部纤维缩短,下部后,上部纤维缩短,下部纤维伸长。纤维伸长。有一层纤维变形后不伸长有一层纤维变形后不伸长也不缩短。也不缩短。3. .两个概念两个概念中性层:梁内既不伸长也不缩短的一层纤维,此层纤维中性层:梁内既不伸长也不缩短的一层纤维,此层纤维称中性层。称中性层。中性轴中性轴中性轴
3、:中性层与横截面的交线。中性轴:中性层与横截面的交线。中性层中性层2022-7-19(一)变形几何关系:dxbblllddd)(ybbnamanmydx建立坐标系变形前:变形后:dy)( a b a b MMn m n m ybbl1yd(1) dlll1伸长量:线应变:dxdxdy)(dxdy)(y中性层中性层中性轴中性轴zyxy (二)物理关系:(二)物理关系:假设:纵向纤维无挤压。假设:纵向纤维无挤压。(2) yEEP时,当xyzx - 曲线曲线 P 式中:E和为常数,所以横截面上正应力与 y 成正比。(三)静力关系:(三)静力关系:zyxzyxMMMFFF0(1)0(2)M(3)xyz
4、FxMyMzMx横截面上的正应力组成一个横截面上的正应力组成一个空间平行力系,可以简化后空间平行力系,可以简化后得到三个内力分量:得到三个内力分量:000 xyzxF 0 0ZSE所以必须,由于yMyAMAz)d(ydAdAAxAFdAAyEdAAyEdZSE00(1)0(2)M(3)由(1)式xyzFxMyMz轴必须通过形心中性所以,)( zAdAzzA )d(AyEzAMAy)d((平面弯曲,(平面弯曲,Iyz=0)yAMAz)d(EIz 梁的抗弯刚度。梁的抗弯刚度。由(2)式由(3)式zIyM (5-2)xyzyzdAdAAAEyzdAAyzEdyzEIAAEyd2AAyEd2zEIMz
5、zEIM1(5-1)0yEzIyM (5-2)xyzMx53 横力弯曲时的正应力横力弯曲时的正应力hFlAB对于横力弯曲,当 5 时,按纯弯曲时的公式计算正应力,误差不超过1%。hl一、一、横力弯曲时的正应力横力弯曲时的正应力 zIyM 二、最大正应力:二、最大正应力:zIMymaxmaxmax : yIWzZ记zWMmaxWz称为抗弯截面系数maxM6 2bhWzbhzy矩形:2 ,12max3hybhIZ抗弯截面系数:抗弯截面系数:32 3dWz)1 (32 43DWzDd空心圆:实心圆:2 ,64max4dydIZ2 maxDydzyDdzy, )1 (6444DIZ nsmaxhFlA
6、B zWMmaxmax三、梁的正应力强度条件三、梁的正应力强度条件max塑性材料脆性材料 ntbttmaxncbccmax例例1FABl图示起重机大梁,Q235钢,=170MPa,小车和重物重量F=265kN,l=4m,求:1)设计h/b=1.5的矩形截面梁; 2)选择工字钢型号: 3)比较这两种截面梁的耗材。hbzy解:解:(1)(1)当小车在跨中时梁最危险。当小车在跨中时梁最危险。zy求支座反力求支座反力, ,画弯矩图。画弯矩图。FABl/2l/2Chbzy(2)矩形截面梁ZWMmaxmaxzWMmaxmax62maxbhM32max5 . 16bM32max5 . 16 Mb)mm(8
7、.160)mm(2 .241 h(3)工字形截面梁 maxMWz)cm(8 .15583zyxM265m)(kN+查表,选择No.45c工字钢工矩AA3cm1570zW23. 3(4)比较耗材工字钢耗材是矩形截面梁的三分之一。工字钢耗材是矩形截面梁的三分之一。hbzyzy120002 .2418 .160 受均布载荷作用的简支梁如图所示,试求:梁内的最大正应力;例例2q=60kN/mAB3m120180zyxM+5 .67m)(kN解:解:MPa2 .1041048. 6105 .6756maxmaxzWMkNm5 .67maxM62bhWz61801202)mm(1048. 635例例3支座
8、A和B放在什么位置,梁的受力最合理。q=60kN/mAB3maa120180zy解:解: 考虑两种极限情况考虑两种极限情况a=0 和和 a=1.5mq=60kN/mABl=3maaq=60kN/mABl=3mxM+5 .67m)(kNM+Mq=60kN/ml=3mABq=60kN/mAl=3maaBM+282qlaql22qaq=60kN/ml=3maaABC22qa2 2qaMMBA8 )2(22qlalqlMC时,梁受力最合理:当 ACMM04422llaa222llla舍去负值la) 12(21l207. 02 2822qaqalql2 82qlaqlM+q=60kN/maaABCm)k
9、N(56.11BAMMm)kN(56.11CM最大弯矩下降了:82. 05 .6756.115 .67%82。降了梁内最大正应力同样下%82l=3mm)kN(56.1156.1156.11M+ 铸铁梁,受力如图,铸铁的t=20MPa,c=60 MPa,试根据危险截面k-k的强度,确定最大载荷P。(2)求危险截面上的弯矩例例4k770Fk101010180285解:(1)求形心位置和惯性矩Cycyzz1)(mm3 .112cy)(mm10622044zI)mm(N770FMKtcMk101010180285Cycyzz1k770FkMktcMk(4)压应力强度(3)拉应力强度zcktIyM)(k
10、N4 .14 F101010180285Cycyzz141062203 .112770FtzckcIyM)285(41062207 .172770Fc)(kN1 .28 F允许的最大载荷允许的最大载荷F14.4kNk770FkMk T 字形截面的铸铁梁,受力如图,铸铁的t=30MPa,c=60 MPa,其截面形心位于C点,y1=52mm, y2=88mm,Iz=763cm4 ,试校核此梁的强度。解:(1)求支座反力)kN(5 . 2AFF1=9kN1m1m1mF2=4kNABCD例例5y1y2CFAFB)kN(5 .10BF(2)画弯矩图找危险截面F1=9kN1m1m1mF2=4kNABCDy
11、1y2CFAFBB截面弯矩最大,是危险截面2.5kNm4kNmMx+(2)B截面的强度F1=9kN1m1m1mF2=4kNABCDy1y2C负弯矩,上边缘受拉,下边缘受压负弯矩,上边缘受拉,下边缘受压zBtIyM1zBcIyM2tc+-tcMB2.5kNm4kNmMx+MPa2 .27107635210446MPa2 .46107638810446(3)C截面的强度F1=9kN1m1m1mF2=4kNABCDy1y2C正弯矩,下边缘受拉,上边缘受压正弯矩,下边缘受拉,上边缘受压zCtIyM2zBzCcIyMIyM21tc+-+-梁安全tcMCMPa2 .281076388105 . 2462.
12、5kNm4kNmMx+讨论:若将若将T字形梁倒置,梁是否安全?字形梁倒置,梁是否安全?F1=9kN1m1m1mF2=4kNABCDy1y2Cy1y2CMPa2 .461076388104t462zBtIyMB截面的拉应力:梁的强度不够。tcMB2.5kNm4kNmMx+ T 字形截面铸铁梁,梁长为l,受活动载荷,如图,已知许用拉应力与许用压应力之比t:c=1:4,y1:y2=1:5,试确定合理的 a 值。例例6y1y2Cal/2ABCDaFl/2解:al/2ABCDaFl/2al/2ABCDaFl/2y1y2CFa+)2(4alF正弯矩:拉应力控制强度负弯矩:压应力控制强度t:c=1:4,y1
13、:y2=1:5y1y2C正弯矩:拉应力控制强度负弯矩:压应力控制强度t:c=1:4,t2zCtIyMc2zBcIyMctBCMM4BCMM4)2(4FaalF3la+)2(4alFFaFSM 54 弯曲弯曲切应力切应力b2h2hzy一、一、 矩形截面矩形截面梁梁1 1、切应力的切应力的两点假设:两点假设: 54 弯曲弯曲切应力切应力yFS(2)切应力沿宽度均匀分布。切应力沿宽度均匀分布。(1 1)切应力与剪力切应力与剪力Fs平行;平行;hbxzyyFS2 2、研究方法:分离体平衡、研究方法:分离体平衡(1 1)在梁上取微段)在梁上取微段hbxzyyFSMM+dMdxdxyFSzyxhbFSFS
14、SFxMdddxF1dx2 2、研究方法:分离体平衡、研究方法:分离体平衡, 0 xFMM+dMyydxyFSzyxhb1dxF2(1 1)在梁上取微段)在梁上取微段(2 2)在微段上再切取一部分求平衡在微段上再切取一部分求平衡0)d(112xbFF1FSFSzIyMM1)d(dxyzyx2FzzISMM)d(bISxMzzdd1由切应力互等定理由切应力互等定理bISFzz*S zzIMSF1同理:*d)d(1AzAyIMMF2dxF1 1AzIyMM1)d( )d( zzISMMSddFxMbISFzzS0)d( 112xbFF由AdAdAy1 *zzIMS0d1xbAdA*b2h2hyzy
15、FSbISFz*zS zb2h2hyyFSy*cA*zS)2(yhb)4(222yhb)2(yhb) 4(222yhIFzS矩max(2b当 y=0 时,max, 2hy 0cyA)24(yhy)24(yh)(2yh)2yh、切应力分布规律、切应力分布规律422ShIFzmax)4(222S矩yhIFz 方向:与横截面上剪力方向一致;方向:与横截面上剪力方向一致; 大小:沿截面宽度均匀分布,沿高度大小:沿截面宽度均匀分布,沿高度h分布为抛物线。分布为抛物线。最大最大切切应力为平均应力为平均切切应力的应力的1.51.5倍。倍。zb2h2hyyFSy*cA*当 y=0 时,max矩形截面弯曲切应力
16、分布规律:矩形截面弯曲切应力分布规律:AF.S51412223ShbhFbhF23S平均5 . 1平均5 . 1maxB2H2H2h2hbyzyFS bISFzZ*S分为腹板和翼板:分为腹板和翼板:翼板上除了有平行于翼板上除了有平行于FS的切应的切应力分量外,还有水平分量。力分量外,还有水平分量。腹板为狭长矩形,可以采用前述的腹板为狭长矩形,可以采用前述的两个假设。采用相同的推导,得到两个假设。采用相同的推导,得到切应力公式切应力公式:二、二、 工字形截面工字形截面梁梁 zS)442)(22(hHhhHB)(8)4(22222*hHByhbSZB2H2H2h2hbyzy)24)(2( yhyy
17、hb2211yAyAA2A11y2y) 4(2)(82222yhbhHBbIFZSmaxminB2H2H2h2hbyyFSy=0时,8)(8222maxbhhHBbIFZS8)( 822hbBBHbIFZS8 822minBhBHbIFZS时, 2hy BbBbB则,如果 minmax此时腹板上的切应力可以看成近此时腹板上的切应力可以看成近似的均匀分布。似的均匀分布。A腹 腹板的面积。SAFA)97. 095. 0(d 腹即:腹板承受了95%97%的剪力又因为max min腹AFSmaxB2H2H2h2hbyzyFS计算计算腹板上切应力的合力:腹板上切应力的合力:对工字形型钢,切应力由下式计算
18、:dSIFZzS)(max为腹板厚度。由查表得到,式中:dSIZzzydmax三、三、 T T字形截面字形截面梁梁yzyFSA*bbISFzZS*在梁的横截面上,最大正应力发生梁截面的上下边缘,在梁的横截面上,最大正应力发生梁截面的上下边缘,最大切应力发生在截面的中性轴处。最大切应力发生在截面的中性轴处。三、切应力强度条件三、切应力强度条件切应力强度条件:切应力强度条件:bISFzzS*maxmaxmaxM max max细长梁的控制因素通常是弯曲正应力,只有在下述情况细长梁的控制因素通常是弯曲正应力,只有在下述情况下,需要进行梁的弯曲切应力强度校核:下,需要进行梁的弯曲切应力强度校核:(2
19、2)铆接或焊接的组合截面,其腹板的厚度较薄,要校核腹板)铆接或焊接的组合截面,其腹板的厚度较薄,要校核腹板的切应力。的切应力。(1 1)梁的跨度较短,或在支座附近作用较大的载荷,以致梁)梁的跨度较短,或在支座附近作用较大的载荷,以致梁的的M较小,而较小,而FS较大时。较大时。(3 3)经)经铆接、焊接或胶合而成的梁,应对焊缝、铆钉、胶合面铆接、焊接或胶合而成的梁,应对焊缝、铆钉、胶合面进行切应力校核。进行切应力校核。 矩形(bh=0.12m0.18m)截面木梁如图, =7MPa,=0. 9 M Pa,校核梁的强度。例例7q=3.6kN/mABL=3m120180zy解:q=3.6kN/mABL
20、=3m(2)校核强度梁安全!zWMmaxmaxAFmaxsmax5 . 1(1)画内力图找危险截面(kN)FS+x4 . 54 . 5xM+m)(kN4.0518. 012. 054005 . 10.375MPa 2max6bhM218. 012. 0405066.25MPa 例例8 已知:已知:q =407kN/m, =190MPa, =130 MPa,校校核梁的强度。核梁的强度。qAB3700200200FAFB)mm(6 .3821y)mm(10249zI)mm(4 .3092y解:(解:(1 1)求形心位置和惯性矩)求形心位置和惯性矩300206501640022y2y1Cz84715
21、0150qAB3700200200FAFB+m)kN(xMx(kN)FS753+753300206501640022y2y1Cz(2 2)画内力图)画内力图zIyM1maxmax961026 .38210847(3 3)弯曲正应力强度)弯曲正应力强度)MPa(162qAB3700200200FAFB(kN)FSx753+7534 .29822400*zS(4 4)弯曲切应力强度)弯曲切应力强度)MPa(4 .77梁安全梁安全bISFzzS*maxmax1610210287. 31075396324 .287164 .287)mm(10287. 336bISFzzS*maxmax30020650
22、1640022y2y1Cz例例9已知:F=30kN,l=5m,大梁由20a工字钢制成,=170MPa,=100 MPa,校核梁的强度。zy200FABlPABl)mkN(5 .37maxM3610237105 .37zWMmaxmax解:(1 1)弯曲正应力强度)弯曲正应力强度FABl/2l/2小车在跨中时,梁内弯矩最大,小车在跨中时,梁内弯矩最大,5 .37m)(kN+)cm(237 3ZW查表得)MPa(158)kN(30max FFS717210303dSIFzzS*maxmax(2 2)弯曲切应力强度)弯曲切应力强度小车在支座附近时,梁内剪力小车在支座附近时,梁内剪力最大,最大,)cm
23、(2 .17 *zzSI查表得)MPa(9 .24FABlFAFB+FAFB梁安全!zy200d)mm(7d例例1010zy12010200FAB2.21.41.4单位:m已知:F=50kN,大梁由20a工字钢制成,用12010mm的钢板加强,=152MPa,=95 MPa,校核梁的强度。)mkN(5 .62maxM46105018110105 .62zIyMmaxmaxmax解:(1)跨中弯曲正应力强度跨中弯曲正应力强度5 .101121211222370 23ZI)MPa(137PAB2.21.41.4FABl/2l/2CDzy12010200)cm( 50184355 .62m)(kN+
24、(2)D截面弯曲正应力强度)mkN(4 .50maxDM3610237104 .50zDWMmaxmax小车在D截面时)MPa(2134 .50m)(kN+FABl/2l/2CDFAB3.61.4D5 .62m)(kN+35(2)D截面弯曲正应力强度)cm(237 3ZW查表得强度不够,钢板需加长。FFSmax717210503dSIFzzS*maxmax(3)弯曲切应力强度小车在支座附近时,梁内剪力最大,)cm(2 .17SI *zz查表得)MPa(5 .41梁切应力强度足够!zy200d)mm(7dPABl/2l/2CDFAFB+FAFB)kN(50例例11已知: Me =40kNm,q=
25、20kN/m,=170MPa,=100 MPa,试选择工字钢型号。FAAB4m2mq1mFBMeFAAB4m2mq1mFBMeFSkN40+解:画 FS 、M 图kN40AF0BF(1)弯曲正应力强度zWMmaxmax17010406 maxMWz3cm3 .235查表,选择No.20a工字钢,Wz=237cm3MmkN40+FAAB4m2mq1mFBMeFSkN40+(2)弯曲切应力强度)cm(2 .17 : ZZ :SI查表得)mm(7ddSIFzzSmaxmax)MPa(2 .33梁切应力强度足够!717210403选择No.20a工字钢。注意:先按正应力强度注意:先按正应力强度选择型号
26、,再校选择型号,再校核切应力强度。核切应力强度。MmkN40+例例12已知:前轴重已知:前轴重F1=10kN,后轴重,后轴重F2=50kN,l=10m,大梁,大梁由两根工字钢制成,由两根工字钢制成, =160MPa, =100 MPa,试选择,试选择工字钢型号工字钢型号。F1ABl2mF2xFA650解:(解:(1 1)弯曲正应力强度)弯曲正应力强度设小车在距左端设小车在距左端 x 距离距离F1ABl2mF2xFAFBCDMCMD+xFB610MCMD+0dd xMC令xFMAC )mkN(104maxCMxx )650(m)(17. 4 0 xF1ABl2mF2xFAFBCDmkN2 .140 maxM1602102 .1406zWM2maxmax 2 maxMWz3cm438MCMD+MCMD+0dd xMD令2)2( 1FxFMAD)mkN(2 .140maxDM22)2()650(Fxxm)(17. 3 0 xF1ABl2mF2xFAFBCD查表,选择查表,选择No.28a工字钢两根,工字钢两根,Wz=508cm3(2 2)弯曲切应力强度)弯曲切应力强度+FAFB小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GBT 26686-2017 地面数字电视接收机通 用规范》专题研究报告
- 《GB-T 32392.4-2015信息技术 互操作性元模型框架(MFI) 第4部分:模型映射元模型》专题研究报告
- 《GB-T 8576-2010复混肥料中游离水含量的测定 真空烘箱法》专题研究报告
- 元宇宙场景信息搭建咨询协议
- 智能建筑工程师岗位招聘考试试卷及答案
- 种子行业种子电商运营专员岗位招聘考试试卷及答案
- 2026年学校教师培训工作计划(4篇)
- 2026年教师培训工作计划(3篇)
- 2025年直流传动矿井提升机合作协议书
- 2025年仪器仪表及文化、办公用机械项目发展计划
- 钢板租赁合同条款(2025版)
- 辐射性白内障的发现与研究
- 珠海市产业和招商扶持政策汇编(2025年版)
- 国开机考 答案2人力资源管理2025-06-21
- 物理●山东卷丨2024年山东省普通高中学业水平等级考试物理试卷及答案
- 提升会计职业素养的试题及答案
- 电动吸盘出租合同协议
- 胃穿孔的相关试题及答案
- 制药行业清洁生产标准
- 教育学原理知到智慧树章节测试课后答案2024年秋浙江师范大学
- 医学影像技术技士题库
评论
0/150
提交评论