




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 第第2 2章章 被控对象的特性被控对象的特性2.12.1 过程建模的基本概念过程建模的基本概念2.1.1 2.1.1 被控过程的数学模型及其作用被控过程的数学模型及其作用 被控过程的数学模型是指过程的输入变量与输出变量之间定量关系的描述被控过程的数学模型是指过程的输入变量与输出变量之间定量关系的描述其中:其中:过程的输入变量至输出变量的信号联系称为通道过程的输入变量至输出变量的信号联系称为通道控制作用至输出变量的信号联系称为控制通道控制作用至输出变量的信号联系称为控制通道干扰作用至输出变量的信号联系称为干扰通道干扰作用至输出变量的信号联系称为干扰通道过程的输出为控制通道与干扰通道的输出之和过
2、程的输出为控制通道与干扰通道的输出之和 过程的数学模型静态数学模型静态数学模型动态数学模型动态数学模型被控过程的数学模型在过程控制中的重被控过程的数学模型在过程控制中的重要性要性n全面、深入地掌握被控过程的数学模型是控制系统设全面、深入地掌握被控过程的数学模型是控制系统设计的基础。计的基础。n良好数学模型的建立是控制器参数确定的重要依据。良好数学模型的建立是控制器参数确定的重要依据。n数学建模是仿真或研究、开发新型控制策略的必要条数学建模是仿真或研究、开发新型控制策略的必要条件件 。n通过对生产工艺过程及相关设备数学模型的分析或仿通过对生产工艺过程及相关设备数学模型的分析或仿真,可以为生产工艺
3、及设备的设计与操作提供指导。真,可以为生产工艺及设备的设计与操作提供指导。n利用数学模型可以及时发现工业过程中控制系统的故利用数学模型可以及时发现工业过程中控制系统的故障及其原因,并提供正确的解决途径。障及其原因,并提供正确的解决途径。 2.1.2 2.1.2 被控过程的特性被控过程的特性依据过程特性的不同分为自衡特性与无自衡特性、单容特性与多容特性、依据过程特性的不同分为自衡特性与无自衡特性、单容特性与多容特性、振荡与非振荡特性等振荡与非振荡特性等 1 1有自衡特性和无自衡特性有自衡特性和无自衡特性当原来处于平衡状态的过程出现干扰时,其输出量在无人或无控制装当原来处于平衡状态的过程出现干扰时
4、,其输出量在无人或无控制装置的干预下,能够自动恢复到原来或新的平衡状态,则称该过程具有置的干预下,能够自动恢复到原来或新的平衡状态,则称该过程具有自衡特性,否则,该过程则被认为无自衡特性。自衡特性,否则,该过程则被认为无自衡特性。 工业生产过程一般都具有储存物料或能量的能力,工业生产过程一般都具有储存物料或能量的能力,其储存能力的大小称为容量。所谓单容过程是指只其储存能力的大小称为容量。所谓单容过程是指只有一个储存容积的过程。当被控过程由多个容积组有一个储存容积的过程。当被控过程由多个容积组成时,则称为多容过程。成时,则称为多容过程。无自衡过程及其阶跃响应曲线无自衡过程及其阶跃响应曲线 自平衡
5、特性其传递函数的典型形式有:自平衡特性其传递函数的典型形式有:( )(1)KG sTs一阶惯性环节一阶惯性环节 二阶惯性环节二阶惯性环节 12( )(1)(1)KGsTsTs( )(1)sKeG sTs12( )(1)(1)sKeG sTsTs二阶惯性二阶惯性+ +纯滞后环节纯滞后环节 一阶惯性一阶惯性+ +纯滞后环节纯滞后环节 具有自衡特性的过程及其响应曲线具有自衡特性的过程及其响应曲线 无平衡特性其传递函数的典型形式有:无平衡特性其传递函数的典型形式有:1()GsT s121( )(1)G sTs T s1( )sG seTs121( )(1)sG seTs Ts一阶环节一阶环节 二阶环节
6、二阶环节 二阶二阶+ +纯滞后环节纯滞后环节 一阶一阶+ +纯滞后环节纯滞后环节 3 3振荡与非振荡过程的特性振荡与非振荡过程的特性在阶跃输入作用下,输出会在阶跃输入作用下,输出会出现多种形式。图中,出现多种形式。图中,a)a)、b)b)和和c)c)为振荡过程,为振荡过程,d)d)和和e)e)为非振荡过程。为非振荡过程。 衰减振荡的传递函数为衰减振荡的传递函数为 2 2( )(21)sKeG sT sTs(01 ) 4 4具有反向特性的过程具有反向特性的过程对过程施加一阶跃输入信号,对过程施加一阶跃输入信号,若在开始一段时间内,过程若在开始一段时间内,过程的输出先降后升或先升后降,的输出先降后
7、升或先升后降,即出现相反的变化方向,则即出现相反的变化方向,则称其为具有反向特性的被控称其为具有反向特性的被控过程。过程。2.1.3 2.1.3 过程建模方法过程建模方法 1 1机理演绎法机理演绎法 根据被控过程的内部机理,运用已知的静态或动态平衡关系,用数学解析根据被控过程的内部机理,运用已知的静态或动态平衡关系,用数学解析的方法求取被控过程的数学模型。的方法求取被控过程的数学模型。2 2试验辨识法试验辨识法先给被控过程人为地施加一个输入作先给被控过程人为地施加一个输入作用,然后记录过程的输出变化量,得用,然后记录过程的输出变化量,得到一系列试验数据或曲线,最后再根到一系列试验数据或曲线,最
8、后再根据输入输出试验数据确定其模型的据输入输出试验数据确定其模型的结构(包括模型形式、阶次与纯滞后结构(包括模型形式、阶次与纯滞后时间等)与模型的参数。时间等)与模型的参数。 主要步骤:主要步骤:主要思路是:主要思路是:3. 3. 混合法混合法机理演绎法与试验辩识法的相互交替使用机理演绎法与试验辩识法的相互交替使用的一种方法的一种方法2.2 2.2 解析法建立过程的数学模型解析法建立过程的数学模型2.2.12.2.1解析法建模的一般步骤解析法建模的一般步骤1 1) 明确过程的输出变量、输入变量和其他中间变量;明确过程的输出变量、输入变量和其他中间变量;2 2) 依据过程的内在机理和有关定理、定
9、律以及公式列写静态方程或依据过程的内在机理和有关定理、定律以及公式列写静态方程或 动态方程;动态方程;3 3) 消去中间变量,求取输入、输出变量的关系方程;消去中间变量,求取输入、输出变量的关系方程;4 4) 将其简化成控制要求的某种形式,如高阶微分(差分)方程或传将其简化成控制要求的某种形式,如高阶微分(差分)方程或传 递函数(脉冲传递函数)等;递函数(脉冲传递函数)等;2.2.2 2.2.2 单容过程的解析法建模单容过程的解析法建模例例1 1:某单容液位过程,如右图。:某单容液位过程,如右图。贮贮罐中液位高度罐中液位高度h为被控参数为被控参数, ,流入贮罐流入贮罐的体积流量为的体积流量为q
10、1q1过程的输入量并可通过程的输入量并可通过阀门过阀门1 1的开度来改变;流出贮罐的的开度来改变;流出贮罐的体积流量体积流量q2q2为过程的干扰,其大小可为过程的干扰,其大小可以通过阀门以通过阀门2 2的开度来改变。试确定的开度来改变。试确定q1q1与与h h之间的数学关系之间的数学关系? ?解解 根据动态物料平衡关系,即在单位时间内贮罐的液体流入量与单位根据动态物料平衡关系,即在单位时间内贮罐的液体流入量与单位时间内贮罐的液体流出量之差应等于贮罐中液体贮存量的变化率时间内贮罐的液体流出量之差应等于贮罐中液体贮存量的变化率12dhqqAdt则有:则有:写为增量形式为写为增量形式为12d hqq
11、Adt 1q2q其中其中h分别为偏离某平衡状态的增量。分别为偏离某平衡状态的增量。A A为贮罐的截面积为贮罐的截面积2R假定假定近似成正比而与阀门近似成正比而与阀门2 2的液阻的液阻成反比成反比2q与与h则有则有 22hqR带入增量式中可得带入增量式中可得单容液位过程的微分方程增量式单容液位过程的微分方程增量式 进行拉普拉斯变换,进行拉普拉斯变换,并写成传递函数形式并写成传递函数形式 221d hR AhR qdt 212( )( )( )11H sRKGsQ sRCsTs其中:其中:CRT2为被控过程的时间常数为被控过程的时间常数 2RK 为被控过程的放大系数为被控过程的放大系数 为被控过程
12、的容量系数,或称为被控过程的容量系数,或称 AC C过程容量,这里过程容量,这里在工业过程中,被控过程一般都有一定的贮存物料和能量的能力,贮存能力在工业过程中,被控过程一般都有一定的贮存物料和能量的能力,贮存能力的大小通常用容量或容量系数表示,其含义为引起单位被控量变化时被控过的大小通常用容量或容量系数表示,其含义为引起单位被控量变化时被控过程贮存量变化的大小。程贮存量变化的大小。 在有些被控过程中,还经常存在纯滞后问题,在有些被控过程中,还经常存在纯滞后问题,如物料的皮带输送过程,如物料的皮带输送过程,管道输送过程等管道输送过程等 0q0ql0q为过程的输入量,那么,当阀为过程的输入量,那么
13、,当阀1 1的开度产生的开度产生需流经长度为需流经长度为的管道后才能进入贮罐而使液位发生变化。的管道后才能进入贮罐而使液位发生变化。需经一段延时才能被控制需经一段延时才能被控制在上例中,在上例中,如果以体积流量如果以体积流量变化后,变化后,即即可以得到纯滞后的单容过程的可以得到纯滞后的单容过程的微分方程和传递函数微分方程和传递函数 0000()( )( )( )1sdhThKqtdtHsKG seQsTs 单容过程的阶跃响应曲线:单容过程的阶跃响应曲线: 比较有延迟与无延迟的区别比较有延迟与无延迟的区别2.2.3 2.2.3 多容过程的解析法建模多容过程的解析法建模以以自衡特性的双容过程自衡特
14、性的双容过程为例,如图为例,如图设为设为q1q1过程过程输入量,第二个液位槽输入量,第二个液位槽的液位的液位h2h2为过程输出量为过程输出量,若不计第一个与第二,若不计第一个与第二个液位槽之间液体输送个液位槽之间液体输送管道所形成的时间延迟管道所形成的时间延迟,试求,试求q1与与h2之间的数之间的数学关系。学关系。 解解根据动态平衡关系,根据动态平衡关系,列出以下增量方程列出以下增量方程 1112d hCqqdt 122hqR2223d hCqqdt233hqR进行拉普拉斯变换,整理进行拉普拉斯变换,整理得到传递函数、数学模型得到传递函数、数学模型 2231212( )( )1( )( )(
15、)11Q sH sRGsQ sQ sTsTs12TR C232TRC为槽为槽1 1的时间常数的时间常数为槽为槽2 2的时间常数的时间常数 其中其中与单容的自平衡阶跃响应过程相比较与单容的自平衡阶跃响应过程相比较2.3 2.3 实验法建立过程的数学模型实验法建立过程的数学模型试验辨识法可分为经典辨识法与现代辨识法两大类。试验辨识法可分为经典辨识法与现代辨识法两大类。在经典辨识法中,最常用的有在经典辨识法中,最常用的有基于响应曲线的辨识方法基于响应曲线的辨识方法;在现代辨识法中,又以在现代辨识法中,又以最小二乘辨识法最小二乘辨识法最为常用。最为常用。 2.3.1 2.3.1 响应曲线法响应曲线法响
16、应曲线法是指通过操作调节阀,使被控过程的控制输入产生一阶跃响应曲线法是指通过操作调节阀,使被控过程的控制输入产生一阶跃变化或方波变化,得到被控量随时间变化的响应曲线或输出数据,再变化或方波变化,得到被控量随时间变化的响应曲线或输出数据,再根据输入输出数据,求取过程的输入输出之间的数学关系。响应根据输入输出数据,求取过程的输入输出之间的数学关系。响应曲线法又分为曲线法又分为阶跃响应曲线法阶跃响应曲线法和和方波响应曲线法方波响应曲线法 阶跃响应曲线法阶跃响应曲线法1 1)试验测试前,被控过程应处于相对稳定的工作状态)试验测试前,被控过程应处于相对稳定的工作状态 一。注意事项一。注意事项2 2)在相
17、同条件下应重复多做几次试验)在相同条件下应重复多做几次试验 ,减少随机干扰的影响,减少随机干扰的影响3 3)对正、反方向的阶跃输入信号进行试验,以衡量过程的非线性程度)对正、反方向的阶跃输入信号进行试验,以衡量过程的非线性程度4 4)一次试验后,应将被控过程恢复到原来的工况并稳定一段时间)一次试验后,应将被控过程恢复到原来的工况并稳定一段时间 再做第二次试验再做第二次试验 5)输入的阶跃幅度不能过大,以免对生产的正常进行产生不利影响。输入的阶跃幅度不能过大,以免对生产的正常进行产生不利影响。 但也不能过小,以防其它干扰影响的比重相对较大而影响试验结果。但也不能过小,以防其它干扰影响的比重相对较
18、大而影响试验结果。 二。模型结构的确定二。模型结构的确定在完成阶跃响应试验后,应根据试验所得的响应曲线确定模型的结构在完成阶跃响应试验后,应根据试验所得的响应曲线确定模型的结构 对于大多数过程,数学模型和传递函数分别为对于大多数过程,数学模型和传递函数分别为- s00( )e1KG sT s012( )(1)(1)KG sT sT s- s012( )e(1)(1)KG sTsTs00( )1KG sT s一阶惯性一阶惯性一阶惯性一阶惯性+ +纯滞后纯滞后 二阶惯性二阶惯性+ +纯滞后纯滞后 二阶惯性二阶惯性 对于某些无自衡特性过程,对于某些无自衡特性过程, 其对应的传递函数为:其对应的传递函
19、数为:01( )G sT s- s01( )eG sT s121( )(1)G sTs T s- s121( )e(1)G sTs T s注意:注意: 对于更高阶或其它较复杂的系统,应在保证辨识精度的前提下,对于更高阶或其它较复杂的系统,应在保证辨识精度的前提下,数学模型结构应尽可能简单数学模型结构应尽可能简单 三。模型参数的确定三。模型参数的确定(1 1)确定一阶环节的参数)确定一阶环节的参数 该响应曲线可近似为无时延的一阶环节该响应曲线可近似为无时延的一阶环节则其输入与输出的关系为:则其输入与输出的关系为:)e1 ()(0/00TtxKty0K0T为过程的放大系数,为过程的放大系数,为时间
20、常数。为时间常数。 其中其中上式中,当上式中,当00)(| )(xKytyt时时00)(xyK0000/|ddTxKtyttTxK0000Tt 000000|()tTK xtK xyT以上式为斜率在以上式为斜率在t=0t=0处作切线,切线方程为处作切线,切线方程为 当当则有:则有:和和时时由以上分析可知由以上分析可知 ,图解法图解法为:为:( )y 0K0T先由上图中的阶跃响应曲线定出先由上图中的阶跃响应曲线定出,根据,根据数值,再在阶跃响应曲线的起点数值,再在阶跃响应曲线的起点t=0t=0处作切线,该切线与处作切线,该切线与的交点所对应的时间(上图中阶跃响应曲线上的的交点所对应的时间(上图中
21、阶跃响应曲线上的OBOB段)即为段)即为 ( )y 00)(| )(xKytyt先确定先确定0T的确定还可以使用的确定还可以使用计算法计算法:)e1 ()(0/00TtxKty00)(| )(xKytyt)e1)()(0/Ttyty02T0T02T)(39%/2)(0yTy)(%36)(0yTy)(%5 . 68)(20yTy令令t t分别为分别为时,则有时,则有以及以及02T0T02T)(39%/2)(0yTy)(%36)(0yTy)(%5 . 68)(20yTy令令t t分别为分别为时,则有时,则有以及以及在阶跃响应曲线上求得在阶跃响应曲线上求得三个状态下的时间三个状态下的时间t1t1、t
22、2t2、t3t3,计算出,计算出0T(2 2)确定一阶时延环节的参数)确定一阶时延环节的参数 如果曲线呈现如果曲线呈现S S形状如右图所示,则形状如右图所示,则该过程可用一阶惯性该过程可用一阶惯性+ +时延环节近似时延环节近似 - s00( )e1KG sT s一阶惯性一阶惯性+时延环节的传递函数时延环节的传递函数 有三个参数需要确定有三个参数需要确定0T0K时延时间时延时间0K的确定方法不变,的确定方法不变,( )y t0( )y t转化为标么值转化为标么值0T和和的确定步骤是:先将阶跃响应的确定步骤是:先将阶跃响应即:即:)()/()(0ytyty相应的阶跃响应表达式为相应的阶跃响应表达式
23、为 tttyTt0e10)(0选取两个不同时刻选取两个不同时刻t1,t2,代入,代入0201e1)(e1)(2010TtTttyty两边取自然对数,两边取自然对数,求解化简可得:求解化简可得:)(1ln)(1ln)(1ln)(1ln)(1ln)(1ln20102011022010120tytytyttyttytyttT这样便求出这样便求出0T和和(3)确定二阶环节的参数)确定二阶环节的参数 012( )(1)(1)KG sTsT s二阶无时延环节阶跃响应曲线如右图:二阶无时延环节阶跃响应曲线如右图: 传递函数为:传递函数为:三个需要确定的参数三个需要确定的参数0T0K1T的确定与一阶环节确定方
24、法相同的确定与一阶环节确定方法相同 0K0T1T的确定采用两点法。的确定采用两点法。设二阶无时延环节的输入、输出关系为设二阶无时延环节的输入、输出关系为 )ee1 ()(2121221100TtTtTTTTTTxKty其中其中0 x为阶跃输入的幅值为阶跃输入的幅值 取阶跃响应曲线上任意两个时刻的坐标,(这里为取阶跃响应曲线上任意两个时刻的坐标,(这里为t=0.4,t=0.8)代入方程)代入方程2 . 0ee6 . 0ee22122111212211212211TtTtTtTtTTTTTTTTTTTT求解可得求解可得)55. 074. 1 ()()(16. 2121221212121ttTTTT
25、ttTT注意注意:用这种方法确定:用这种方法确定T1和和T2时,应满足时,应满足120.320.46tt的条件的条件 因为,当因为,当120.32tt时,应为一阶环节时,应为一阶环节 00(1)KT s 其中其中1202.12ttT当当120.46tt时,应为二阶环节时,应为二阶环节 200)1(sTK其中其中12022.18ttT时,应为二阶以上环节。时,应为二阶以上环节。 当当120.46tt对于对于n阶环节传递函数阶环节传递函数nsTKsG) 1()(00nttT16.22100T可以按可以按近似计算近似计算大小由下表确定大小由下表确定12tt其中其中n可以根据的可以根据的n12345678101214t1/t20.320.460.530.580.620.650.670.6850.710.7350.75高阶过程的高阶过程的n与与12tt的关系的关系(4)确定二阶时延环节的参数)确定二阶时延环节的参数 二阶
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高精度数字电流表项目合作计划书
- 2025年医用放射治疗设备合作协议书
- 教育建筑环境教育与生态保护的协调发展
- 2025年黑白系列偏光片项目建议书
- 教育技术工具如何改变传统教学模式
- 教育与商业共融的园区物业服务模式
- 医疗心理服务为患者带来心灵的光明
- 教育游戏化的实践与创新策略分享
- 专题04 推-荐信 感谢信 倡议书(讲义)(原卷版)-2025年高考英语二轮复习
- 2025年商丘名校高二物理第二学期期末检测试题含解析
- 中小学小班化教学模式与支持体系构建研究
- 温州市2024-2025学年高一下学期6月期末-英语试卷及答案
- 2025至2030中国核应急机器人行业市场现状分析及竞争格局与投资发展报告
- 导管室护理管理制度
- 降低跌倒事件的发生率QC圈
- 深静脉血栓的试题及答案
- 2025年安徽省邮政行业职业技能大赛(快递员赛项)备赛试题库(含答案)
- 安全生产主要负责人考试题及答案
- 汽车产业链协同发展-洞察阐释
- 英语教师进城选调考试试题及答案
- 滴灌带造颗粒合同协议
评论
0/150
提交评论