2021-2022学年天津市和平区名校高三第一次调研测试数学试卷含解析_第1页
2021-2022学年天津市和平区名校高三第一次调研测试数学试卷含解析_第2页
2021-2022学年天津市和平区名校高三第一次调研测试数学试卷含解析_第3页
2021-2022学年天津市和平区名校高三第一次调研测试数学试卷含解析_第4页
2021-2022学年天津市和平区名校高三第一次调研测试数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡

2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于的概率为( )ABCD2已知椭圆(ab0)与双曲线(a0,b0)的焦点相同,则双曲线渐近线方程为()ABCD3已知双曲线C的两条渐近线的夹角为60,则双曲线C的方程不可能为( )ABCD4一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为;当无放回依次取出两个小球时,记取出的红球数为,则(

3、 )A,B,C,D,5函数在上为增函数,则的值可以是( )A0BCD6已知曲线的一条对称轴方程为,曲线向左平移个单位长度,得到曲线的一个对称中心的坐标为,则的最小值是( )ABCD7已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为( )ABCD8如图,在中, ,是上的一点,若,则实数的值为( )ABCD9若,则的虚部是( )ABCD10由曲线围成的封闭图形的面积为( )ABCD11已知复数满足(是虚数单位),则=()ABCD12已知是定义是上的奇函数,满足,当时, ,则函数在区间上的零点个数是( )A3B5C7D9二、填空题:本题共4小题,每小题5分,共20分。13在的展开式中,的

4、系数为_用数字作答14二项式的展开式中所有项的二项式系数之和是64,则展开式中的常数项为_.15曲线在点处的切线方程为_16三对父子去参加亲子活动,坐在如图所示的6个位置上,有且仅有一对父子是相邻而坐的坐法有_种(比如:B与D、B与C是相邻的,A与D、C与D是不相邻的).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,函数.()判断函数的单调性;()若时,对任意,不等式恒成立,求实数的最小值.18(12分)某机构组织的家庭教育活动上有一个游戏,每次由一个小孩与其一位家长参与,测试家长对小孩饮食习惯的了解程度在每一轮游戏中,主持人给出A,B,C,D四种食物,

5、要求小孩根据自己的喜爱程度对其排序,然后由家长猜测小孩的排序结果设小孩对四种食物排除的序号依次为xAxBxCxD,家长猜测的序号依次为yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四个数字的一种排列定义随机变量X(xAyA)2+(xByB)2+(xCyC)2+(xDyD)2,用X来衡量家长对小孩饮食习惯的了解程度(1)若参与游戏的家长对小孩的饮食习惯完全不了解()求他们在一轮游戏中,对四种食物排出的序号完全不同的概率;()求X的分布列(简要说明方法,不用写出详细计算过程);(2)若有一组小孩和家长进行来三轮游戏,三轮的结果都满足X4,请判断这位家长对小孩饮食习惯是否

6、了解,说明理由19(12分)(江苏省徐州市高三第一次质量检测数学试题)在平面直角坐标系中,已知平行于轴的动直线交抛物线: 于点,点为的焦点.圆心不在轴上的圆与直线, , 轴都相切,设的轨迹为曲线.(1)求曲线的方程;(2)若直线与曲线相切于点,过且垂直于的直线为,直线, 分别与轴相交于点, .当线段的长度最小时,求的值.20(12分)设函数.(1)解不等式;(2)记的最大值为,若实数、满足,求证:.21(12分)健身馆某项目收费标准为每次60元,现推出会员优惠活动:具体收费标准如下:现随机抽取了100为会员统计它们的消费次数,得到数据如下:假设该项目的成本为每次30元,根据给出的数据回答下列问

7、题:(1)估计1位会员至少消费两次的概率(2)某会员消费4次,求这4次消费获得的平均利润;(3)假设每个会员每星期最多消费4次,以事件发生的频率作为相应事件的概率,从会员中随机抽取两位,记从这两位会员的消费获得的平均利润之差的绝对值为,求的分布列及数学期望22(10分)设椭圆:的左、右焦点分别为,下顶点为,椭圆的离心率是,的面积是.(1)求椭圆的标准方程.(2)直线与椭圆交于,两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】由几何概型的概

8、率计算,知每次生成一个实数小于1的概率为,结合独立事件发生的概率计算即可.【详解】每次生成一个实数小于1的概率为.这3个实数都小于1的概率为.故选:C.【点睛】本题考查独立事件同时发生的概率,考查学生基本的计算能力,是一道容易题.2A【解析】由题意可得,即,代入双曲线的渐近线方程可得答案.【详解】依题意椭圆与双曲线即的焦点相同,可得:,即,可得,双曲线的渐近线方程为:,故选:A【点睛】本题考查椭圆和双曲线的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,属于基础题3C【解析】判断出已知条件中双曲线的渐近线方程,求得四个选项中双曲线的渐近线方程,由此确定选项.【详解】两条渐近线的夹角转

9、化为双曲渐近线与轴的夹角时要分为两种情况依题意,双曲渐近线与轴的夹角为30或60,双曲线的渐近线方程为或.A选项渐近线为,B选项渐近线为,C选项渐近线为,D选项渐近线为.所以双曲线的方程不可能为.故选:C【点睛】本小题主要考查双曲线的渐近线方程,属于基础题.4B【解析】分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系.【详解】可能的取值为;可能的取值为,故,.,故,,故,.故选B.【点睛】离散型随机变量的分布列的计算,应先确定随机变量所有可能的取值,再利用排列组合知识求出随机变量每一种取值情况的概率,然后利用公式计算期望和方差,注意在取球模型中摸出的球有放回与无放回的区别.

10、5D【解析】依次将选项中的代入,结合正弦、余弦函数的图象即可得到答案.【详解】当时,在上不单调,故A不正确;当时,在上单调递减,故B不正确;当时,在上不单调,故C不正确;当时,在上单调递增,故D正确.故选:D【点睛】本题考查正弦、余弦函数的单调性,涉及到诱导公式的应用,是一道容易题.6C【解析】在对称轴处取得最值有,结合,可得,易得曲线的解析式为,结合其对称中心为可得即可得到的最小值.【详解】直线是曲线的一条对称轴.,又.平移后曲线为.曲线的一个对称中心为.,注意到故的最小值为.故选:C.【点睛】本题考查余弦型函数性质的应用,涉及到函数的平移、函数的对称性,考查学生数形结合、数学运算的能力,是

11、一道中档题.7C【解析】求导,先求出在单增,在单减,且知设,则方程有4个不同的实数根等价于方程在上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得.【详解】依题意,令,解得,故当时,当,且,故方程在上有两个不同的实数根,故,解得.故选:C.【点睛】本题考查确定函数零点或方程根个数.其方法:(1)构造法:构造函数(易求,可解),转化为确定的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出的图象草图,数形结合求解;(2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符

12、号,进而判断函数在该区间上零点的个数.8B【解析】变形为,由得,转化在中,利用三点共线可得.【详解】解:依题: ,又三点共线,解得故选:【点睛】本题考查平面向量基本定理及用向量共线定理求参数. 思路是(1)先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.利用向量共线定理及向量相等的条件列方程(组)求参数的值. (2)直线的向量式参数方程: 三点共线 (为平面内任一点,)9D【解析】通过复数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部.【详解】由题可知,所以的虚部是1.故选:D.【点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.1

13、0A【解析】先计算出两个图像的交点分别为,再利用定积分算两个图形围成的面积.【详解】封闭图形的面积为.选A.【点睛】本题考察定积分的应用,属于基础题.解题时注意积分区间和被积函数的选取.11A【解析】把已知等式变形,再由复数代数形式的乘除运算化简得答案【详解】解:由,得,故选【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题12D【解析】根据是定义是上的奇函数,满足,可得函数的周期为3,再由奇函数的性质结合已知可得 ,利用周期性可得函数在区间上的零点个数【详解】是定义是上的奇函数,满足, ,可得,函数的周期为3,当时, ,令,则,解得或1,又函数是定义域为的奇函数,在区间上,

14、有由,取,得 ,得,又函数是周期为3的周期函数,方程=0在区间上的解有 共9个,故选D【点睛】本题考查根的存在性及根的个数判断,考查抽象函数周期性的应用,考查逻辑思维能力与推理论证能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。131【解析】利用二项展开式的通项公式求出展开式的通项,令,求出展开式中的系数【详解】二项展开式的通项为 令得的系数为 故答案为1【点睛】利用二项展开式的通项公式是解决二项展开式的特定项问题的工具14【解析】由二项式系数性质求出,由二项展开式通项公式得出常数项的项数,从而得常数项【详解】由题意,展开式通项为,由得,常数项为故答案为:【点睛】本题考查二项式

15、定理,考查二项式系数的性质,掌握二项展开式通项公式是解题关键15【解析】对函数求导后,代入切点的横坐标得到切线斜率,然后根据直线方程的点斜式,即可写出切线方程.【详解】因为,所以,从而切线的斜率,所以切线方程为,即.故答案为:【点睛】本题主要考查过曲线上一点的切线方程的求法,属基础题.16192【解析】根据题意,分步进行分析:,在三对父子中任选1对,安排在相邻的位置上,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,由分步计数原理计算可得答案【详解】根据题意,分步进行分析:,在三对父子中任选1对,有3种选法,由图可得相邻的位置有4种情况,将选出的1对父子安排在相邻的位置,有种安排

16、方法;,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,有种安排方法,则有且仅有一对父子是相邻而坐的坐法种;故答案为:【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1) 故函数在上单调递增,在上单调递减;(2). 【解析】试题分析:()根据题意得到的解析式和定义域,求导后根据导函数的符号判断单调性()分析题意可得对任意,恒成立,构造函数,则有对任意,恒成立,然后通过求函数的最值可得所求试题解析:(I)由题意得, .当时,函数在上单调递增;当时,令,解得;令,解得.故函数在上单调递增,在上单

17、调递减.综上,当时,函数在上单调递增;当时,函数在上单调递增,在上单调递减.(II)由题意知.,当时,函数单调递增不妨设 ,又函数单调递减,所以原问题等价于:当时,对任意,不等式 恒成立,即对任意,恒成立.记,由题意得在上单调递减.所以对任意,恒成立.令,则在上恒成立.故,而在上单调递增,所以函数在上的最大值为.由,解得.故实数的最小值为18(1)()()分布表见解析;(2)理由见解析【解析】(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,家长的排序有种等可能结果,利用列举法求出其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,由此能求出他们在一轮游戏

18、中,对四种食物排出的序号完全不同的概率(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况,由此能求出X的分布列(2)假设家长对小孩的饮食习惯完全不了解,在一轮游戏中,P(X4)=P(X=0)+ P(X=2)=,三轮游戏结果都满足“X4”的概率为,这个结果发生的可能性很小,从而这位家长对小孩饮食习惯比较了解【详解】(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,先考虑小孩的排序为xA,xB,xC,xD为1234的情况,家长的排序有24种等可能结果,其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,分别为:2143,2

19、341,2413,3142,3412,3421,4123,4312,4321,家长的排序与对应位置的数字完全不同的概率P基小孩对四种食物的排序是其他情况,只需将角标A,B,C,D按照小孩的顺序调整即可,假设小孩的排序xA,xB,xC,xD为1423的情况,四种食物按1234的排列为ACDB,再研究yAyByCyD的情况即可,其实这样处理后与第一种情况的计算结果是一致的,他们在一轮游戏中,对四种食物排出的序号完全不同的概率为(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况,列出所有情况,分别计算每种情况下的x的值,X的分布列如下表: X 02 4 6 8

20、10 12 14 16 18 20 P (2)这位家长对小孩的饮食习惯比较了解理由如下:假设家长对小孩的饮食习惯完全不了解,由(1)可知,在一轮游戏中,P(X4)P(X0)+P(X2),三轮游戏结果都满足“X4”的概率为()3,这个结果发生的可能性很小,这位家长对小孩饮食习惯比较了解【点睛】本题考查概率的求法,考查古典概型、排列组合、列举法等基础知识,考查运算求解能力,是中档题19 (1) (2)见解析.【解析】试题分析:(1)设根据题意得到,化简得到轨迹方程;(2)设, ,构造函数研究函数的单调性,得到函数的最值.解析:(1)因为抛物线的方程为,所以的坐标为,设,因为圆与轴、直线都相切,平行

21、于轴,所以圆的半径为,点 ,则直线的方程为,即, 所以,又,所以,即,所以的方程为 (2)设, ,由(1)知,点处的切线的斜率存在,由对称性不妨设,由,所以,所以, 所以 令,则,由得,由得,所以在区间单调递减,在单调递增,所以当时,取得极小值也是最小值,即取得最小值, 此时 点睛:求轨迹方程,一般是问谁设谁的坐标然后根据题目等式直接求解即可,而对于直线与曲线的综合问题要先分析题意转化为等式,例如,可以转化为向量坐标进行运算也可以转化为斜率来理解,然后借助韦达定理求解即可运算此类题计算一定要仔细.20(1)(2)证明见解析【解析】(1)采用零点分段法:、,由此求解出不等式的解集;(2)先根据绝对值不等式的几何意义求解出的值,然后利用基本不等式及其变形完成证明.【详解】(1)当时,不等式为,解得当时,不等式为,解得当时,不等式为,解得原不等式的解集为(2)当且仅当即时取等号,(当且仅当时取“”)同理可得,(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论