2022届山东省滕州市高考仿真卷数学试题含解析_第1页
2022届山东省滕州市高考仿真卷数学试题含解析_第2页
2022届山东省滕州市高考仿真卷数学试题含解析_第3页
2022届山东省滕州市高考仿真卷数学试题含解析_第4页
2022届山东省滕州市高考仿真卷数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡

2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1正方形的边长为,是正方形内部(不包括正方形的边)一点,且,则的最小值为( )ABCD2设,集合,则()ABCD3 的内角的对边分别为,已知,则角的大小为( )ABCD4已知函数,若曲线上始终存在两点,使得,且的中点在轴上,则正实数的取值范围为( )ABCD5如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是( )A甲班的数学成绩平均分的平均水平高于乙班B甲班的数学成绩的平均分比乙班稳定C甲班的数学成绩平均分的中位数高于乙班D甲、乙两班这

3、5次数学测试的总平均分是1036已知(为虚数单位,为的共轭复数),则复数在复平面内对应的点在( ).A第一象限B第二象限C第三象限D第四象限7设函数,当时,则( )ABC1D8各项都是正数的等比数列的公比,且成等差数列,则的值为()ABCD或9若函数f(x)a|2x4|(a0,a1)满足f(1),则f(x)的单调递减区间是( )A(,2B2,)C2,)D(,210已知中,则( )A1BCD11已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为( )ABCD12已知函数,存在实数,使得,则的最大值为( )ABCD二、填空题:本题共4小题,

4、每小题5分,共20分。13设等差数列的前项和为,若,则_,的最大值是_.14如图,在中,点在边上,且,将射线绕着逆时针方向旋转,并在所得射线上取一点,使得,连接,则的面积为_15在的展开式中,常数项为_.(用数字作答)16如图,在平面四边形ABCD中,|AC|=3,|BD|=4,则(AB+DC)(BC+AD)=_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)对于非负整数集合(非空),若对任意,或者,或者,则称为一个好集合以下记为的元素个数(1)给出所有的元素均小于的好集合(给出结论即可)(2)求出所有满足的好集合(同时说明理由)(3)若好集合满足,求证:中存在元素

5、,使得中所有元素均为的整数倍18(12分)已知点,直线与抛物线交于不同两点、,直线、与抛物线的另一交点分别为两点、,连接,点关于直线的对称点为点,连接、(1)证明:;(2)若的面积,求的取值范围19(12分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)求曲线C的极坐标方程和直线l的直角坐标方程;(2)若射线与曲线C交于点A(不同于极点O),与直线l交于点B,求的最大值.20(12分)已知圆M:及定点,点A是圆M上的动点,点B在上,点G在上,且满足,点G的轨迹为曲线C.(1)求曲线C的方程;(2)设斜率为k

6、的动直线l与曲线C有且只有一个公共点,与直线和分别交于P、Q两点.当时,求(O为坐标原点)面积的取值范围.21(12分)已知在中,角,的对边分别为,且.(1)求的值;(2)若,求面积的最大值.22(10分)在平面直角坐标系中,曲线的参数方程为(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线与曲线的普通方程,并求出直线的倾斜角;(2)记直线与轴的交点为是曲线上的动点,求点的最大距离.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】分别以直线为轴,直线为轴建立平面直角坐标系,设,根据,

7、可求,而,化简求解.【详解】解:建立以为原点,以直线为轴,直线为轴的平面直角坐标系.设,则,由,即,得.所以=,所以当时,的最小值为.故选:C.【点睛】本题考查向量的数量积的坐标表示,属于基础题.2B【解析】先化简集合A,再求.【详解】由 得: ,所以 ,因此 ,故答案为B【点睛】本题主要考查集合的化简和运算,意在考查学生对这些知识的掌握水平和计算推理能力.3A【解析】先利用正弦定理将边统一化为角,然后利用三角函数公式化简,可求出解B.【详解】由正弦定理可得,即,即有,因为,则,而,所以.故选:A【点睛】此题考查了正弦定理和三角函数的恒等变形,属于基础题.4D【解析】根据中点在轴上,设出两点的

8、坐标,().对分成三类,利用则,列方程,化简后求得,利用导数求得的值域,由此求得的取值范围.【详解】根据条件可知,两点的横坐标互为相反数,不妨设,(),若,则,由,所以,即,方程无解;若,显然不满足;若,则,由,即,即,因为,所以函数在上递减,在上递增,故在处取得极小值也即是最小值,所以函数在上的值域为,故.故选D.【点睛】本小题主要考查平面平面向量数量积为零的坐标表示,考查化归与转化的数学思想方法,考查利用导数研究函数的最小值,考查分析与运算能力,属于较难的题目.5D【解析】计算两班的平均值,中位数,方差得到正确,两班人数不知道,所以两班的总平均分无法计算,错误,得到答案.【详解】由题意可得

9、甲班的平均分是104,中位数是103,方差是26.4;乙班的平均分是102,中位数是101,方差是37.6,则A,B,C正确.因为甲、乙两班的人数不知道,所以两班的总平均分无法计算,故D错误.故选:.【点睛】本题考查了茎叶图,平均值,中位数,方差,意在考查学生的计算能力和应用能力.6D【解析】设,由,得,利用复数相等建立方程组即可.【详解】设,则,所以,解得,故,复数在复平面内对应的点为,在第四象限.故选:D.【点睛】本题考查复数的几何意义,涉及到共轭复数的定义、复数的模等知识,考查学生的基本计算能力,是一道容易题.7A【解析】由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后

10、由正弦函数性质求得参数值【详解】,时,由题意,故选:A【点睛】本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键8C【解析】分析:解决该题的关键是求得等比数列的公比,利用题中所给的条件,建立项之间的关系,从而得到公比所满足的等量关系式,解方程即可得结果.详解:根据题意有,即,因为数列各项都是正数,所以,而,故选C.点睛:该题应用题的条件可以求得等比数列的公比,而待求量就是,代入即可得结果.9B【解析】由f(1)=得a2=,a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-,2上单调递减,在2,+)上单调递增,所以f(x)在(-,2上单调递增,在2

11、,+)上单调递减,故选B.10C【解析】以为基底,将用基底表示,根据向量数量积的运算律,即可求解.【详解】,.故选:C.【点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.11B【解析】计算求半径为,再计算球体积和圆锥体积,计算得到答案.【详解】如图所示:设球半径为,则,解得.故求体积为:,圆锥的体积:,故.故选:.【点睛】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力.12A【解析】画出分段函数图像,可得,由于,构造函数,利用导数研究单调性,分析最值,即得解.【详解】由于,,由于,令,在,故.故选:A【点睛】本题考查了导数在函数性

12、质探究中的应用,考查了学生数形结合,转化划归,综合分析,数学运算的能力,属于较难题.二、填空题:本题共4小题,每小题5分,共20分。13 【解析】利用等差数列前项和公式,列出方程组,求出首项和公差的值,利用等差数列的通项公式可求出数列的通项公式,可求出的表达式,然后利用双勾函数的单调性可求出的最大值.【详解】(1)设等差数列的公差为,则,解得,所以,数列的通项公式为;(2),令,则且,由双勾函数的单调性可知,函数在时单调递减,在时单调递增,当或时,取得最大值为.故答案为:;.【点睛】本题考查等差数列的通项公式、前项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是中档题14【解析】由

13、余弦定理求得,再结合正弦定理得,进而得,得,则面积可求【详解】由,得,解得.因为,所以,所以.又因为,所以.因为,所以.故答案为【点睛】本题考查正弦定理、余弦定理的应用,考查运算求解能力,是中档题15【解析】的展开式的通项为,取计算得到答案.【详解】的展开式的通项为:,取得到常数项.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力.16-7【解析】由题意得AB+DC=AC-BD,BC+AD=AC+BD,然后根据数量积的运算律求解即可【详解】由题意得AB+DC=AC+CB+(DB+BC)=AC-BD,BC+AD=BA+AC+(AB+BD)=AC+BD,AB+DCBC+AD=AC-

14、BDAC+BD=AC2-BD2=9-16=-7【点睛】突破本题的关键是抓住题中所给图形的特点,利用平面向量基本定理和向量的加减运算,将所给向量统一用AC,BD表示,然后再根据数量积的运算律求解,这样解题方便快捷三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1),(2);证明见解析(3)证明见解析【解析】(1)根据好集合的定义列举即可得到结果;(2)设,其中,由知;由可知或,分别讨论两种情况可的结果;(3)记,则,设,由归纳推理可求得,从而得到,从而得到,可知存在元素满足题意.【详解】(1),(2)设,其中,则由题意:,故,即,考虑,可知:,或,若,则考虑,则,但此时,不满

15、足题意;若,此时,满足题意,其中为相异正整数(3)记,则,首先,设,其中,分别考虑和其他任一元素,由题意可得:也在中,而,对于,考虑,其和大于,故其差,特别的,由,且,以此类推:,此时,故中存在元素,使得中所有元素均为的整数倍【点睛】本题考查集合中的新定义问题的求解,关键是明确已知中所给的新定义的具体要求,根据集合元素的要求进行推理说明,对于学生分析和解决问题能力、逻辑推理能力有较高的要求,属于较难题.18(1)见解析;(2)【解析】(1)设点、,求出直线、的方程,与抛物线的方程联立,求出点、的坐标,利用直线、的斜率相等证明出;(2)设点到直线、的距离分别为、,求出,利用相似得出,可得出的边上

16、的高,并利用弦长公式计算出,即可得出关于的表达式,结合不等式可解出实数的取值范围.【详解】(1)设点、,则,直线的方程为:,由,消去并整理得,由韦达定理可知,代入直线的方程,得,解得,同理,可得,,代入得,因此,;(2)设点到直线、的距离分别为、,则,由(1)知,同理,得,由,整理得,由韦达定理得,得,设点到直线的高为,则,解得,因此,实数的取值范围是.【点睛】本题考查直线与直线平行的证明,考查实数的取值范围的求法,考查抛物线、直线方程、韦达定理、弦长公式、直线的斜率等基础知识,考查运算求解能力,考查数形结合思想,是难题19(1):,直线:;(2)【解析】(1)由消参法把参数方程化为普通方程,

17、再由公式进行直角坐标方程与极坐标方程的互化;(2)由极径的定义可直接把代入曲线和直线的极坐标方程,求出极径,把比值化为的三角函数,从而可得最大值、【详解】(1)消去参数可得曲线的普通方程是,即,代入得,即,曲线的极坐标方程是;由,化为直角坐标方程为(2)设,则,当时,取得最大值为【点睛】本题考查参数方程与普通方程的互化,考查极坐标方程与直角坐标方程的互化,掌握公式可轻松自如进行极坐标方程与直角坐标方程的互化20(1);(2).【解析】(1)根据题意得到GB是线段的中垂线,从而为定值,根据椭圆定义可知点G的轨迹是以M,N为焦点的椭圆,即可求出曲线C的方程;(2)联立直线方程和椭圆方程,表示处的面

18、积代入韦达定理化简即可求范围.【详解】(1)为的中点,且是线段的中垂线,又,点G的轨迹是以M,N为焦点的椭圆,设椭圆方程为(),则,所以曲线C的方程为.(2)设直线l:(),由消去y,可得.因为直线l总与椭圆C有且只有一个公共点,所以,.又由可得;同理可得.由原点O到直线的距离为和,可得.将代入得,当时,综上,面积的取值范围是.【点睛】此题考查了轨迹和直线与曲线相交问题,轨迹通过已知条件找到几何关系从而判断轨迹,直线与曲线相交一般联立设而不求韦达定理进行求解即可,属于一般性题目.21 (1);(2) .【解析】分析:(1)在式子中运用正弦、余弦定理后可得(2)由经三角变换可得,然后运用余弦定理可得,从而得到,故得详解:(1)由题意及正、余弦定理得, 整理得,(2)由题意得, ,. 由余弦定理得, ,当且仅当时等号成立 面积的最大值为点睛:(1)正、余弦定理经常与三角形的面积综合在一起考查,解题时要注意整体代换的应用,如余弦定理中常用的变形,这样自然地与三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论