




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
2、要求的。1马林梅森是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物,梅森在欧几里得、费马等人研究的基础上对2p1作了大量的计算、验证工作,人们为了纪念梅森在数论方面的这一贡献,将形如2P1(其中p是素数)的素数,称为梅森素数.若执行如图所示的程序框图,则输出的梅森素数的个数是( )A3B4C5D62已知集合,则=ABCD3已知函数,若对,且,使得,则实数的取值范围是( )ABCD4如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图则下列结论中表述不正确的是( )A从2000年至2016年,该地区环境基础设施投资额逐年增加;B2011年该地区环境基
3、础设施的投资额比2000年至2004年的投资总额还多;C2012年该地区基础设施的投资额比2004年的投资额翻了两番 ;D为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.5已知函数f(x)=xex2+axex-a有三个不同的零点x1,x2,x3 (其中x1x2x3),则1-x1ex121-x2ex21-x3ex3 的值为( )A1B-1CaD-a6已知是双曲线的左、右焦点,是的左、右顶点,点在过且斜率为的直线上,为等腰三角形,则的渐近
4、线方程为( )ABCD7已知展开式中第三项的二项式系数与第四项的二项式系数相等,若,则的值为( )A1B1C8lD818某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是( )注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A互联网行业从业人员中90后占一半以上B互联网行业中从事技术岗位的人数超过总人数的C互联网行业中从事运营岗位的人数90后比80前多D互联网行业中从事技术岗位的人数90后比80后多9若x,y满足约束条件且的最大值为,则a的取值范围是(
5、)ABCD10若集合,则下列结论正确的是( )ABCD11若为虚数单位,网格纸上小正方形的边长为1,图中复平面内点表示复数,则表示复数的点是( )AEBFCGDH12已知在平面直角坐标系中,圆:与圆:交于,两点,若,则实数的值为( )A1B2C-1D-2二、填空题:本题共4小题,每小题5分,共20分。13已知是同一球面上的四个点,其中平面,是正三角形,则该球的表面积为_.14从一箱产品中随机地抽取一件,设事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知, ,则事件“抽到的产品不是一等品”的概率为_15甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,则“甲、乙两人恰好在同一企业”
6、的概率为_.16在平面直角坐标系中,已知点,若圆上有且仅有一对点,使得的面积是的面积的2倍,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)第7届世界军人运动会于2019年10月18日至27日在湖北武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项,329个小项.共有来自100多个国家的近万名现役军人同台竞技.前期为迎接军运会顺利召开,武汉市很多单位和部门都开展了丰富多彩的宣传和教育活动,努力让大家更多的了解军运会的相关知识,并倡议大家做文明公民.武汉市体育局为了解广大民众对军运会知识的知晓情况,在全市开展了网上问卷调查,民众参与度极高,现从
7、大批参与者中随机抽取200名幸运参与者,他们得分(满分100分)数据,统计结果如下:组别频数5304050452010(1)若此次问卷调查得分整体服从正态分布,用样本来估计总体,设,分别为这200人得分的平均值和标准差(同一组数据用该区间中点值作为代表),求,的值(,的值四舍五入取整数),并计算;(2)在(1)的条件下,为感谢大家参与这次活动,市体育局还对参加问卷调查的幸运市民制定如下奖励方案:得分低于的可以获得1次抽奖机会,得分不低于的可获得2次抽奖机会,在一次抽奖中,抽中价值为15元的纪念品A的概率为,抽中价值为30元的纪念品B的概率为.现有市民张先生参加了此次问卷调查并成为幸运参与者,记
8、Y为他参加活动获得纪念品的总价值,求Y的分布列和数学期望,并估算此次纪念品所需要的总金额.(参考数据:;.)18(12分)我国在2018年社保又出新的好消息,之前流动就业人员跨地区就业后,社保转移接续的手续往往比较繁琐,费时费力.社保改革后将简化手续,深得流动就业人员的赞誉.某市社保局从2018年办理社保的人员中抽取300人,得到其办理手续所需时间(天)与人数的频数分布表:时间人数156090754515(1)若300名办理社保的人员中流动人员210人,非流动人员90人,若办理时间超过4天的人员里非流动人员有60人,请完成办理社保手续所需时间与是否流动人员的列联表,并判断是否有95%的把握认为
9、“办理社保手续所需时间与是否流动人员”有关.列联表如下流动人员非流动人员总计办理社保手续所需时间不超过4天办理社保手续所需时间超过4天60总计21090300(2)为了改进工作作风,提高效率,从抽取的300人中办理时间为流动人员中利用分层抽样,抽取12名流动人员召开座谈会,其中3人要求交书面材料,3人中办理的时间为的人数为,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87919(12分)设数列满足,.(1)求数列的通项公式;(2)设,求数列的前项和.20(12分)已知椭圆的离心率为,直线过椭圆的右焦点,过的直线交椭圆于两点(均异于左、右顶点).
10、(1)求椭圆的方程;(2)已知直线,为椭圆的右顶点. 若直线交于点,直线交于点,试判断是否为定值,若是,求出定值;若不是,说明理由.21(12分)某商场为改进服务质量,在进场购物的顾客中随机抽取了人进行问卷调查调查后,就顾客“购物体验”的满意度统计如下:满意不满意男女是否有的把握认为顾客购物体验的满意度与性别有关?若在购物体验满意的问卷顾客中按照性别分层抽取了人发放价值元的购物券若在获得了元购物券的人中随机抽取人赠其纪念品,求获得纪念品的人中仅有人是女顾客的概率附表及公式:22(10分)已知函数(,为自然对数的底数),.(1)若有两个零点,求实数的取值范围;(2)当时,对任意的恒成立,求实数的
11、取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】模拟程序的运行即可求出答案【详解】解:模拟程序的运行,可得:p1,S1,输出S的值为1,满足条件p7,执行循环体,p3,S7,输出S的值为7,满足条件p7,执行循环体,p5,S31,输出S的值为31,满足条件p7,执行循环体,p7,S127,输出S的值为127,满足条件p7,执行循环体,p9,S511,输出S的值为511,此时,不满足条件p7,退出循环,结束,故若执行如图所示的程序框图,则输出的梅森素数的个数是5,故选:C【点睛】本题主要考查程序框图,属于基础题2
12、C【解析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养采取数轴法,利用数形结合的思想解题【详解】由题意得,则故选C【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分3D【解析】先求出的值域,再利用导数讨论函数在区间上的单调性,结合函数值域,由方程有两个根求参数范围即可.【详解】因为,故,当时,故在区间上单调递减;当时,故在区间上单调递增;当时,令,解得,故在区间单调递减,在区间上单调递增.又,且当趋近于零时,趋近于正无穷;对函数,当时,;根据题意,对,且,使得成立,只需,即可得,解得.故选:D.【点睛】本题考查利用导数研究由方程根的个数求参
13、数范围的问题,涉及利用导数研究函数单调性以及函数值域的问题,属综合困难题.4D【解析】根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.【详解】对于选项,由图像可知,投资额逐年增加是正确的.对于选项,投资总额为亿元,小于年的亿元,故描述正确.年的投资额为亿,翻两翻得到,故描述正确.对于选项,令代入回归直线方程得亿元,故选项描述不正确.所以本题选D.【点睛】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题.5A【解析】令xex=t,构造g(x)=xex,要使函数f(x)=xex2+axex-a有三个不同的零点x1,x2,x3(其中x1x20,解得
14、a0或a0,a-4两个情况分类讨论,可求出1-x1ex121-x2ex21-x3ex3的值.【详解】令xex=t,构造g(x)=xex,求导得g(x)=1-xex,当x0;当x1时,g(x)0,故g(x)在-,1上单调递增,在1,+上单调递减,且x0时,g(x)0时,g(x)0,g(x)max=g(1)=1e,可画出函数g(x)的图象(见下图),要使函数f(x)=xex2+axex-a有三个不同的零点x1,x2,x3(其中x1x2x3),则方程t2+at-a=0需要有两个不同的根t1,t2(其中t10,解得a0或a0,即t1+t2=-a0t1t2=-a0,则t10t21e,则x10 x21x3
15、,且gx2=gx3=t2,故1-x1ex121-x2ex21-x3ex3=1-t121-t22=1-t1+t2+t1t22=1+a-a2=1,若a4t1t2=-a4,由于g(x)max=g(1)=1e,故t1+t22e4,故a-4不符合题意,舍去. 故选A. 【点睛】解决函数零点问题,常常利用数形结合、等价转化等数学思想.6D【解析】根据为等腰三角形,可求出点P的坐标,又由的斜率为可得出关系,即可求出渐近线斜率得解.【详解】如图,因为为等腰三角形,所以,,,又,解得,所以双曲线的渐近线方程为,故选:D【点睛】本题主要考查了双曲线的简单几何性质,属于中档题.7B【解析】根据二项式系数的性质,可求
16、得,再通过赋值求得以及结果即可.【详解】因为展开式中第三项的二项式系数与第四项的二项式系数相等,故可得,令,故可得,又因为,令,则,解得令,则.故选:B.【点睛】本题考查二项式系数的性质,以及通过赋值法求系数之和,属综合基础题.8D【解析】根据两个图形的数据进行观察比较,即可判断各选项的真假【详解】在A中,由整个互联网行业从业者年龄分别饼状图得到互联网行业从业人员中90后占56%,所以是正确的;在B中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分布条形图得到:,互联网行业从业技术岗位的人数超过总人数的,所以是正确的;在C中,由整个互联网行业从业者年龄分别饼状图,90后从事互
17、联网行业岗位分别条形图得到:,互联网行业从事运营岗位的人数90后比80后多,所以是正确的;在D中,互联网行业中从事技术岗位的人数90后所占比例为,所以不能判断互联网行业中从事技术岗位的人数90后比80后多故选:D.【点睛】本题主要考查了命题的真假判定,以及统计图表中饼状图和条形图的性质等基础知识的应用,着重考查了推理与运算能力,属于基础题.9A【解析】画出约束条件的可行域,利用目标函数的最值,判断a的范围即可【详解】作出约束条件表示的可行域,如图所示.因为的最大值为,所以在点处取得最大值,则,即.故选:A【点睛】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键10D【
18、解析】由题意,分析即得解【详解】由题意,故,故选:D【点睛】本题考查了元素和集合,集合和集合之间的关系,考查了学生概念理解,数学运算能力,属于基础题.11C【解析】由于在复平面内点的坐标为,所以,然后将代入化简后可找到其对应的点.【详解】由,所以,对应点.故选:C【点睛】此题考查的是复数与复平面内点的对就关系,复数的运算,属于基础题.12D【解析】由可得,O在AB的中垂线上,结合圆的性质可知O在两个圆心的连线上,从而可求.【详解】因为,所以O在AB的中垂线上,即O在两个圆心的连线上,三点共线,所以,得,故选D.【点睛】本题主要考查圆的性质应用,几何性质的转化是求解的捷径.二、填空题:本题共4小
19、题,每小题5分,共20分。13【解析】求得等边三角形的外接圆半径,利用勾股定理求得三棱锥外接球的半径,进而求得外接球的表面积.【详解】设是等边三角形的外心,则球心在其正上方处.设,由正弦定理得.所以得三棱锥外接球的半径,所以外接球的表面积为.故答案为:【点睛】本小题主要考查几何体外接球表面积的计算,属于基础题.140.35【解析】根据对立事件的概率和为1,结合题意,即可求出结果来【详解】解:由题意知本题是一个对立事件的概率,抽到的不是一等品的对立事件是抽到一等品,抽到不是一等品的概率是,故答案为:【点睛】本题考查了求互斥事件与对立事件的概率的应用问题,属于基础题15【解析】求出所有可能,找出符
20、合可能的情况,代入概率计算公式【详解】解:甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,共有种,甲乙在同一个公司有两种可能,故概率为,故答案为【点睛】本题考查古典概型及其概率计算公式,属于基础题16【解析】写出所在直线方程,求出圆心到直线的距离,结合题意可得关于的等式,求解得答案【详解】解:直线的方程为,即圆的圆心到直线的距离,由的面积是的面积的2倍的点,有且仅有一对,可得点到的距离是点到直线的距离的2倍,可得过圆的圆心,如图:由,解得故答案为:【点睛】本题考查直线和圆的位置关系以及点到直线的距离公式应用,考查数形结合的解题思想方法,属于中档题三、解答题:共70分。解答应写出文字说
21、明、证明过程或演算步骤。17(1),;(2)详见解析.【解析】(1)根据频率分布表计算出平均数,进而计算方差,从而XN(65,142),计算P(51X93)即可;(2)列出Y所有可能的取值,分布求出每个取值对应的概率,列出分布列,计算期望,进而可得需要的总金额【详解】解:(1)由已知频数表得:,由,则,而,所以,则X服从正态分布,所以;(2)显然,所以所有Y的取值为15,30,45,60,所以Y的分布列为:Y15304560P所以,需要的总金额为:.【点睛】本题考查了利用频率分布表计算平均数,方差,考查了正态分布,考查了离散型随机变量的概率分布列和数学期望,主要考查数据分析能力和计算能力,属于
22、中档题18(1)列联表见解析,有;(2)分布列见解析,.【解析】(1)根据题意,结合已知数据即可填写列联表,计算出的观测值,即可进行判断;(2)先计算出时间在和选取的人数,再求出的可取值,根据古典概型的概率计算公式求得分布列,结合分布列即可求得数学期望.【详解】(1)因为样本数据中有流动人员210人,非流动人员90人,所以办理社保手续所需时间与是否流动人员列联表如下:办理社保手续所需时间与是否流动人员列联表流动人员非流动人员总计办理社保手续所需时间不超过4天453075办理社保手续所需时间超过4天16560225总计21090300结合列联表可算得.有95%的把握认为“办理社保手续所需时间与是
23、否流动人员”有关.(2)根据分层抽样可知时间在可选9人,时间在可以选3名,故,则,可知分布列为0123可知.【点睛】本题考查独立性检验中的计算,以及离散型随机变量的分布列以及数学期望,涉及分层抽样,属综合性中档题.19(1);(2).【解析】(1)令可求得的值,令时,由可得出,两式相减可得的表达式,然后对是否满足在时的表达式进行检验,由此可得出数列的通项公式;(2)求出数列的通项公式,对分奇数和偶数两种情况讨论,利用奇偶分组求和法结合等差数列和等比数列的求和公式可求得结果.【详解】(1),当时,;当时,由得,两式相减得,.满足.因此,数列的通项公式为;(2).当为奇数时,;当为偶数时,.综上所述,.【点睛】本题考查数列通项的求解,同时也考查了奇偶分组求和法,考查计算能力,属于中等题.20(1)(2)定值为0.【解析】(1)根据直线方程求焦点坐标,即得c,再根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位招聘考试面试技巧与指导
- 2025年电商代运营项目申请报告模板
- 2025年人降钙素基因相关肽脂质体项目规划申请报告模板
- 2025年特种作业类危险化学品安全作业胺基化工艺作业-重氮化工艺作业参考题库含答案解析
- 房屋交接协议书
- 2025年特种作业类危险化学品安全作业烷基化工艺作业-氯化工艺作业参考题库含答案解析
- 工地事故和解协议书
- 公司租房合同
- 连云港中专数学试卷
- 2025年特种作业类危险化学品安全作业-裂解(裂化)工艺作业参考题库含答案解析
- 三视图及尺寸标注课件
- 混凝土配合比验证检验委托书模板
- 住房公积金投诉申请书
- 众辰变频器说明书3400
- 小学教师量化考核表
- 计算机操作系统(第四版)-汤小丹-课后习题答案
- 《财务管理》课程教学实施方案
- 露天采矿设计技术规定
- 检验科生物安全风险评估报告
- 12生物分子网络ppt课件
- 手术室护士长工作手册-精品完整版
评论
0/150
提交评论