实证金融 重庆课件1_第1页
实证金融 重庆课件1_第2页
实证金融 重庆课件1_第3页
实证金融 重庆课件1_第4页
实证金融 重庆课件1_第5页
已阅读5页,还剩209页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实证金融西南财经大学证券期货学院重庆培训部课程概要引言实证金融的研究范例实证金融论文写作目标通过实证金融学研究文献的讨论,了解相关领域的研究进展,介绍资产定价领域的实证研究设计与方法体会金融论文写作选题规范实施通过课程的学习,独立设计实施一个实证金融的研究项目,并规范地完成硕士论文的写作内容实证金融研究的研究方法实证专题有效市场假说的检验 资产定价模型的检验 价值投资,动量效应、反转效应的检验如何设计研究计划?论文的格式与要求I、引言什么是实证研究? 以事实、实际情况和收集到的数据为对象,通过分析、计算、实验、研究,解释和预测经济、会计、金融实务,回答“实际上是什么”的问题。 实证研究要求客观

2、、准确、理性的描述现实 实证研究以解释现实为目的,认为存在就是事实 实证研究采用客观中立的立场 目前,在国际上,实证研究方法广泛的应用在经济、金融、会计等社会学科的研究中-实证经济学 1953 弗里德曼实证经济学方法论发展历程-实证会计学 1968 Ball,R.J., P.Brown An Empirical Evaluation of Accounting Income NumbersJournal of Accounting Research 1986 Watts, Zimmerman 实证会计理论趋势由于金融市场每天都产生海量的数据,这些数据又是从真实的交易 过程中产生的, 这一特性使

3、实证研究成为现代金融研究的主流话语” Ross20世纪80年代以来,JF,JFE,RFS上实证性研究的论文占半数以上,有的年份还高达80以上。现在实证研究已成为金融研究的主流。实 证 的 要 素 数据:反映客观状况的统计数据。 模型:刻画客观现象的数学方程。 假设:对所研究问题的结果或状态的一种预期。 检验:利用数据,使用统计学知识对假设的统计显著性作出判断。 推理:基于知识和经验对假设检验结果进行推理分析。 结论:利用假设检验的结果,通过合理的逻辑推理得出结论,观点。确立研究课题实 证 研 究 方 法 步 骤寻找相关理论提出命题假设设计研究方案搜集事实数据分析数据检验命题得出研究结论实证金融

4、实证金融:以金融学理论为出发点和导向,分析实际金融数据,检验理论、假说或观点,探索具有经济意义的新现象。金融理论实证检验新的经验证据新的理论实证检验实证金融研究什么?从理论出发 理论 资产定价理论:CAPM 假说 市场有效性假说 观点 基金经理人的管理水平与其个人特征相关实证金融研究什么?从现象出发 封闭式基金折价 首次公开发行股票的首日折价 股票收益的日历效应II、实证金融的研究范例三个主要的实证金融研究领域一、有效市场的实证检验二、资本资产定价模型(CAPM)的实证检验三、关于市场异象的实证经验有效市场的实证检验一、我国股市的实证检验结果:自从全国性股票市场建立以来,对我国股票市场有效性的

5、讨论和检验从未间断过,遗憾的是,至今仍未能形成统一的令人信服的结论。信息股票的历史价格信息所有公开的信息所有可获得的信息(包括内部或私人信息)有效市场假说的类型弱式有效市场:如果所有关于过去价格变化的信息都反映在现行股价上。半强式有效市场:假定所有公开可得的信息反映在股票价格上。强式有效市场:假定所有信息(尤其包括非公开信息)都反映在股价上。假说类型针对信息集(逐步扩大)结论弱式EMH历史信息技术分析无效半强式EMH公开信息(历史信息+基本面信息)基本面分析也无效强式EMH所有信息(历史信息+基本面信息+内幕信息)内幕交易也无效相对市场有效并不简单是市场要么严格有效,要么严格无效的问题,而是一

6、个有效的程度问题。问题的关键不是某个市场是否有效,而是多有效。二、弱式有效检验背景:弱式有效检验考察过去价格的时间序列是否能用于预测未来的股价。上证综指: 12/19/199002/18/2011收益率: 12/19/199002/18/20111、回归分析研究:Fama(1965),股票市场价格行为一文中对30支股票进行了间隔一天的回归分析。结论:过去价格序列确实包含一些有关未来股价行为的信息,但基于过去数据的任何交易方式可能不具价值,即便最小的交易费用也会淹没超额报酬。25有关回归的基本介绍:最小二乘法 金融、经济变量之间的关系,大体上可以分为两种: (1)函数关系:Y=f(X1,X2,.

7、,XP),其中Y的值是由Xi(i=1,2.p)所唯一确定的。 (2)相关关系: Y=f(X1,X2,.,XP) ,这里Y的值不能由Xi(i=1,2.p)精确的唯一确定。26图2-1 货币供应量和GDP散点图27图2-1表示的是我国货币供应量M2(y)与经过季节调整的GDP(x)之间的关系(数据为1995年第一季度到2004年第二季度的季度数据)。28但有时候我们想知道当x变化一单位时,y平均变化多少,可以看到,由于图中所有的点都相对的集中在图中直线周围,因此我们可以以这条直线大致代表x与y之间的关系。如果我们能够确定这条直线,我们就可以用直线的斜率来表示当x变化一单位时y的变化程度,由图中的点

8、确定线的过程就是回归。 29对于变量间的相关关系,我们可以根据大量的统计资料,找出它们在数量变化方面的规律(即“平均”的规律),这种统计规律所揭示的关系就是回归关系(regressive relationship),所表示的数学方程就是回归方程(regression equation)或回归模型(regression model)。问题:怎样的拟合直线方程最好?答:保证这条直线与所有点的距离之和最近. 基于这种想法:最小二乘法问题:怎么定义”与所有点的距离之和最近?答:设直线ya+bx,任意给定的一个样本点 (xi,yi) yi(a+bxi)2 刻画这个样本点与这条直线的 “距离”,表示了两者

9、的接近程度.若有n个样本点:(x1,y1), ,(xn,yn),可以用下面的表达式来刻画这些点与直线ya+bx的接近程度:使上式达到最小值的直线就是所求的直线.此时:32图2-1中的直线可表示为 (2.1) 根据上式,在确定、的情况下,给定一个x值,我们就能够得到一个确定的y值,然而根据式(2.1)得到的y值与实际的y值存在一个误差(即图2-1中点到直线的距离)。 33如果我们以表示误差,则方程(2.1)变为: 即: 其中t(=1,2,3,.,T)表示观测数。 (2.2)(2.3)式(2.3)即为一个简单的双变量回归模型(因其仅具有两个变量x, y)的基本形式。 34其中yt被称作因变量(de

10、pendent variable)、 被解释变量(explained variable)、 结果变量(effect variable);xt被称作自变量(independent variable)、解释变量(explanatory variable)、 原因变量(causal variable)35、为参数(parameters),或称回归系数(regression coefficients);t通常被称为随机误差项(stochastic error term),或随机扰动项(random disturbance term),简称误差项,在回归模型中它是不确定的,服从随机分布(相应的,yt也是

11、不确定的,服从随机分布)。 36为什么将t 包含在模型中?(1)有些变量是观测不到的或者是无法度量的,又或者影响因变量yt的因素太多;(2)在yt的度量过程中会发生偏误,这些偏误在模型中是表示不出来的;(3)外界随机因素对yt的影响也很难模型化,比如:恐怖事件、自然灾害、设备故障等。37参数的最小二乘估计(一) 方法介绍本章所介绍的是普通最小二乘法(ordinary least squares,简记OLS);最小二乘法的基本原则是:最优拟合直线应该使各点到直线的距离的和最小,也可表述为距离的平方和最小。假定根据这一原理得到的、估计值为 、 ,则直线可表示为 。38直线上的yt值,记为 ,称为拟

12、合值(fitted value),实际值与拟合值的差,记为 ,称为残差(residual) ,可以看作是随机误差项 的估计值。 根据OLS的基本原则,使直线与各散点的距离的平方和最小,实际上是使残差平方和(residual sum of squares, 简记RSS) 最小,即最小化: RSS= = (2.4) 39根据最小化的一阶条件,将式2.4分别对 、求偏导,并令其为零,即可求得结果如下 :(2.5) (2.6) 40假设检验假设检验的程序是,先根据实际问题的要求提出一个论断,称为零假设(null hypothesis)或原假设,记为H0(一般并列的有一个备择假设(alternative

13、 hypothesis),记为H1 )然后根据样本的有关信息,对H0的真伪进行判断,做出拒绝H0或不能拒绝H0的决策。41P值和t值t值越大,拒绝零假设的可能性就越大;t值越小,拒绝零假设时可能性就越小。 P值度量的是拒绝正确的零假设的概率。P值越大,错误地拒绝零假设的可能性就越大;p值越小,拒绝零假设时就越放心。现在许多统计软件都能计算各种统计量的t值、p值,如Eviews、Stata等。对上证综合指数的回归检验时间段:12/19/199012/13/199612/13/199606/13/200106/13/200101/04/200601/04/200611/04/200801/04/2

14、00602/18/201112/19/199012/13/1996结论:回归系数为0.0071 0.1081,因此在0.05的置信水平下,拒绝一次项系数为零的原假设,表明有正相关。12/13/199606/13/2001结论:回归系数为-0.0734 0.0449,因此在0.05的置信水平下,不能拒绝一次项系数为零的原假设。06/13/200101/04/2006结论:回归系数为-0.0468 0.0714,因此在0.05的置信水平下,不能拒绝一次项系数为零的原假设。01/04/200611/04/2008结论:回归系数为-0.0635 0.0866,因此在0.05的置信水平下,不能拒绝一次项

15、系数为零的原假设。01/04/200602/18/2011结论:回归系数为-0.0453 0.0661,因此在0.05的置信水平下,不能拒绝一次项系数为零的原假设。时间段样本数量H0:斜率为零斜率的置信区间12/19/199012/13/19961513拒绝0.0071 0.108112/13/199606/13/20011081无法拒绝-0.0734 0.044906/13/200101/04/2006 1102无法拒绝-0.0468 0.071401/04/200611/04/2008 687无法拒绝-0.0635 0.086601/04/200602/18/20111243无法拒绝-0.

16、0453 0.0661回归检验2、Autocorrelation Test:自相关检验Ljung-Box的Q统计量:是通过计算序列自相关系数平方的加权平均来检验序列是否独立,是一种传统直观的方法。Q统计量如下式所示:其中rj是滞后为j的相关系数,T是样本容量,p为滞后阶数。其原假设为:序列独立。LBQ-test(Series, Lags, Alpha)12/19/199012/13/1996Lbqtest: H=1; pValue =0.005212/13/199606/13/2001Lbqtest: H=0; pValue =0.057506/13/200101/04/2006Lbqtest

17、: H=0; pValue =0.878201/04/200611/04/2008Lbqtest: H=1; pValue =2.1192e-00401/04/200602/18/2011Lbqtest: H=1; pValue =0.0096时间段样本数量HpValue12/19/199012/13/1996151310.005212/13/199606/13/2001108100.057506/13/200101/04/2006 110200.878201/04/200611/04/2008 68712.1192e-00401/04/200602/18/2011124310.0096Lju

18、ng-Box的Q统计量3、 Lo and MacKinlay (1988, RFS) 方差比检验Random walk modelEfficient market prices follow random walkDoes stock market price follow random walk?Starting from mid 80s, studies starting showing that returns are predictable.Implication on market efficiency.Methodology: tests of random walkVarianc

19、e ratio testVariance Ratio Tests (1)Variance Ratio Tests (2)DataDo Stock prices follow random walk?Strong rejections on weekly equal weighted index (not value weighted)Few rejections for individual stocks二、半强式有效检验背景:弱式有效检验仅注重股票过去价格的信息,半强式有效检验涉及所有公开所得信息,当然包括股票价格;如果市场是半强式有效,那么利好消息已经反映在股价上,在披露信息后,无超额报酬

20、可挣。事件研究法背景:半强式有效市场的检验可以采用事件研究法,事件如公司配股;拆股信息的颁布;盈利分红信息的颁布;送转股;基金经理的变更;融资决策对股票价格(或企业价值) 的影响。事件研究概述定义指运用金融市场的数据资料来测定某一特定经济事件对一公司价值的影响。基本原理 假设市场理性,则有关事件的影响将会立即反映在证券价格之中。于是,运用相对来说比较短期所观察到的证券价格就可以测定某一事件的经济影响。 事件研究步骤1 事件定义(Event definition)确定所要研究的事件明确事件所涉及公司证券价格的研究期间事件窗 (event window) 2 取样标准(Selection crit

21、eria) 归纳出一些样本特征 (如公司市场资本化、行业代表、事件发布的时间分布等 )并注明通过选样可能导致的任何偏差 。3 界定正常和非正常收益 正常收益是指假设不发生该事件条件下的预期收益。非正常收益即事件期间内该证券事前或事后实际收益与同期正常收益之差。事件研究各时间窗T0T1T2T30估计窗口检验窗口事件日L1L2市场模型(Market Model)中国证券分析师推荐价值研究数据:2005年5月31日起至2007年3月31日止wind资讯系统记录的全部股票推荐,期间,收录了来自32家研究机构653名分析师共计4567个推荐评级样本,涉及1035家上市公司,其中沪市617家,深市418家

22、。有效样本2922个:剔除,如次新股、ST股票、重复推荐等所有推荐样本按评级分类的统计性描述“买入”评级和“增持”评级的数量远多于“卖出”和“减持”评级的数量,分析师普遍表现出一种“乐观”的倾向。所有推荐样本按规模分类的统计性描述分析师对中小市值个股的偏好。事件研究法分别研究分析师推荐的短期效应和长期投资价值。估计窗口:推荐日前67天至前176天共110个交易日。短期检验窗口:推荐日及前后5天共计11天作为事件期。长期检验窗口:推荐日起后推最长6个月作为事件期。全部样本推荐日起六个月内的ACAR(平均累积异常收益)平均而言,6个月能够获得超过大盘将近2%的超额收益,整体而言,分析师具有一定的选

23、股择时能力,其推荐具有一定的投资价值。大盘股、中盘股和小盘股自推荐日起六个月内的ACAR平均来看,中等市值股票六个月能获得相对大盘约7%的超额收益。分析师推荐的小盘股长期的平均异常收益显著为负,即长期来看其表现不如市场指数。明星分析师和非明星分析师自2003年开始,我国著名财经杂志新财富借鉴国际惯例,每年由机构投资者投票评选出当年各个行业的“最佳分析师“。当选“最佳分析师”,意味着该分析师推荐的价值得到了买方机构投资者的高度认可,同时,也会给当选分析师带来薪酬和行业地位的大幅提高,目前该头衔已成为衡量国内分析师水平高低的标尺之一。当年当选的明星分析师与非明星分析师ACAR的比较 明星分析师并没

24、有显示出显著超过一般分析师的推荐价值。2006年当选的明星分析师与非明星分析师短期推荐效应比较明星分析师短期内的市场影响力显著超过非明星分析师,说明依据目前国内”最佳分析师“机制选出的并不是长期推荐价值最高的分析师,而是短期内对市场影响力最强的分析师。股价和宏观经济标变量的关系Returns are predictableValuation ratios (D/P, E/P, B/M ratios)Interest rates (term spread, short-long T-bill rates, etc.)Decision of market participants (corpora

25、te financing, consumption).4.Cross-sectional equity pricing.5.Bond and foreign exchange returns are also predictable.Some funds seem to outperform simple indices, even after controlling for risk through market betas.Fama and French (1989), JFE: economic questionsEconomic questions:1. Do the expected

26、 returns on bonds and stocks move together? Do the same variables forecast bond and stock returns?2. Is the variation in expected returns related to business cycles?Motivation:1. Evidence shows that stock and bond returns are predictable.2. Interpretations: market inefficiency versus rational variat

27、ion in expected returns.Framework: Regress future returns on variables X(t) known at time t.r (t,t +) = () + () X(t) + (t,t +) (1)where can be one month, one quarter, and one to four years.r (t,t + ): value- and equal-weighted market portfolios of NYSE; value-weighted corporate bond portfolios.X(t)

28、variables:Dividend yields D(t)/P(t): summing monthly dividends for the year preceding time t divided by the value of the portfolio at time t (Discount rate intuition)Term Premium TERM(t): the difference between the returns on long- and short-term governance bonds. Default premium DEF(t): the differe

29、nce between the returns on corporate Baa bonds and long-term governance bonds.D/P has strongest effect (high t-stats and high R2) Regression coefficients and R2 rise with the forecast horizon.Rational time-variation of expected return:time-varying risk aversiontime-varying amount of risk资本资产定价模型的实证检

30、验要点1. 资本资产定价模型(CAPM )回顾2. 实证检验CAPM的方法 (Empirical Tests of CAPM)横截面回归法 Cross Sectional approach 时间序列回归法 Time-series approach3. 实例分析: Example for the Empirical Tests of CAPM : Fama and French (1992,1993, 1996) CAPM AssumptionsNo transactions costsNo taxesPerfect competitionNo individual can affect pri

31、cesInvestors have the same utility functionOnly expected returns and variances matterNormally distributed returnsUnlimited short sales and borrowing and lending at the risk free rate of returnFeasible portfolios withN risky assets Dominated and Efficient PortfoliosUtility MaximizationA world with on

32、e riskless asset and N risky assetsThree Important FundsThe riskless asset has a standard deviation of zeroThe minimum variance portfolio lies on the boundary of the feasible set at a point where variance is minimumThe market portfolio lies on the feasible set and on a tangent from the risk-free ass

33、etWhen the risk free asset is introduced,All investors prefer a combination of 1) The risk free asset and 2) The market portfolioSuch combinations dominate all other assets and portfoliosUtility maximization witha riskfree assetThe Capital Market LineAll investors face the same Capital Market Line (

34、CML) given by:The Capital Market Line (cont.)The CAPM and the Security Market Line (cont.)The expected return on any asset can be written as:This is the Security Market Line (SML).The CAPM and the Security Market Line (cont.)Graphical depiction of CAPM, the security market line.CAPMThe CAPM: the exp

35、ected return on the asset is determined from its Beta:Beta is the regression slope coefficient when the return on the asset is regressed on the return on the market.Empirical Tests of CAPM The CAPM assumes only one source of systematic risk: Market Risk. Systematic risk: Cannot be diversified The CA

36、PM is: Ri,t - rf = i + i (Rm,t - rf) + i,ti=1,.,N and t=1,TRi,t = return on asset i at time t.rf = return of riskless asset at time t. Rm,t = return on the market portfolio at time t.i and i are the coefficients to be estimated.Cov(Rm,t,i,t) = 0The model is also called the Security Characteristic Li

37、ne (SCL). If i = 0,. then ERi,t - rf = i E(Rm,t - rf)(This is the Sharpe-Litner CAPM.)E(Rm,t - rf) is called the market risk premium: the difference between the return on the market portfolio and the return on a riskless bond.The expected return on asset i over rf is the market excess return. i is t

38、he factor (sensitivity to market risk).If i = 0, asset i is not exposed to market risk. Thus, the investor is not compensated with higher return. Zero- asset, market neutral.If i 0, asset i is exposed to market risk and Ri,t rf , provided that ERm,t rf 0.Q: What is the Market Portfolio? It represent

39、s all wealth. We need to include not only all stocks, but all bonds, real estate, privately held capital, publicly held capital (roads, universities, etc.), and human capital in the world. (Easy to state, but complicated to form.)Q: How do we calculate ERm,t and rf?The CAPM can be represented as a r

40、elation between ER and :ERi = rf + i (Security Market Line=SML)Two test approaches for CAPMCross Sectional approach: Fama and French (1992)Time-series approach: Fama and French (1993, 1996)Early tests focused on the cross-section of stock returns. Test SML.If i is known, a cross-sectional regression

41、 with ERi and i can be used to test the CAPM:ERi = + i + i(SML)Test H0: 0.(The value of is also of importance. Why?)Problem: We do not know i. It has to be estimated. This will introduce measurement error: bias!Examples of the early tests: Black, Jensen and Scholes (1972), Fama and MacBeth (1973), F

42、indings: Support for CAPM.More modern tests focused on the time-series behavior. Two popular approaches: Ri,t - rf = i + i (Rm,t - rf) + i,t- Test H0: i=0 (i is the pricing error. Jensens alpha.)(Joint tests are more efficient H0: 1 = 2 = N=0 (for all i)- Add more explanatory variables Zi,t to the C

43、APM regression:Ri,t - rf = i + i (Rm,t - rf) + Zi,t + i,tTest: H0: =0.(We are testing CAPMs specification.) Findings: Negative for CAPM. is significant. First pass: time series estimation where security (or portfolio) returns were regressed against a market index :Ri,t - rf = i + i (Rm,t - rf) + i,t

44、(CAPM) Second pass: cross-sectional estimation where the estimated CAPM-beta from the first pass is related to average return:Ri = (1-i) + i + i,t(SML for security i)( equals rf in the CAPM and ER0m in the Black CAPM. While is the expected market return. Main problem: Measurement error in i. Solutio

45、n:Measure s based on the notion that portfolio p estimates will be less affected by measurement error than individual i estimates due to aggregation.CAPM Test- Cross Sectional approach: Two pass techniqueFama and French (1992) TestsMarket betas should explain the average returns on any asset.To test

46、 if beta completely explains the cross-section of average returns, us Fama and MacBeth (1973) cross-sectional regressions.Two steps for Fama and MacBeth regressions.Suppose there are N assets at time t, we know R(i,t), Beta (I,t), and X(i,t) other variables such as firm size, B/M ratio, P/E ratio wh

47、ere asset i=1,2,N; t=1,2,.T (1) The regression model for the cross section of N assets at time of t is: R(i,t)- RF(t)= a(t) + b(t)*Beta (i,t) + c(t)*X(i,t) (2) Aggregate the estimates in the time dimension, given T observations of a(t), b(t) , c(t) , test the null a(t)=0 , b (t)=RM(t)-RF(t) 0, and c

48、(t)=0 FM has become a staple in applied finance. - Very simple. No need to estimate SE in pass 2.- It can be easily adapted to introduce additional risk measures P/E, Size, B/M, Leverage, etc.- If coefficients are constant over time, it is equivalent to a FE panel estimation. General Issues: (1) Por

49、tfolios: each beta is estimated with error. If the estimation errors are uncorrelated across stocks, a portfolio reduces estimation error and improves second pass regression. The estimators are biased, but consistent.(2) Rolling Regression: To reduce the bias in estimation error, estimate a lot of b

50、etas!Motivation of Fama and French (1992)Banz (1981): Firm size (ME) can explain the cross-section of average returns in addition to Beta.Bhandari (1988): leverage helps explain the cross-section of average stock returns in tests that include size and Beta.Rosenberg, Reid, and Lanstein (1985): book-

51、to-market equity (BE/ME) also has a strong role in explaining the cross-section of average returns. Basu (1983) shows that earnings-price ratios (E/P) help explain the cross-section of average returns.Contribution of Fama and French (1992)Fama and French (1992): evaluate the joint roles of Beta, siz

52、e, E/P, leverage, and book-to-market equity in the cross-section of average returns.Their conclusion: Size and book-to-market combine to explain the cross-section of average returns; the relation between beta and average return is not significant.The Beta is dead.Fama and French (1992): Sample const

53、ructionAll nonfinancial firms in the intersection of (i) the NYSE, AMEX, and NASDAQ return files from CRSP and (ii) the merged COMPUSTAT annual industrial files of income statement and balance-sheet data from CRSP.Maintain the six-month gap between fiscal yearend and the return tests by matching the

54、 accounting data for all fiscal year ends in calendar year t1 with the returns for July of year t to June of t+1. (ensure that the accounting variables are known before the returns they are used to explain)Use a firms market equity at the end of December of year t1 to compute its book-to-market, lev

55、erage, and earnings-price ratios for t1, and use its market equity for June of year t to measure its size.Fama and French (1992): Beta estimation (1)Estimate beta for portfolios and then assign a portfolios beta to each stock in the portfolio. Why?Estimates of beta for portfolios are more precise fo

56、r portfolios than for individual stocksSize, E/P, leverage, B/M measured precisely for individual stocksIn June of each year, all NYSE stocks on CRSP are sorted by size to determine the NYSE decile breakpoints for size. Stocks that have the required CRSP- OMPUSTAT data are then allocated to 10 size

57、portfolios based on the NYSE breakpointsWhy use size portfolios?Fama and French (1992): Beta estimation (2)To allow for variation in Beta unrelated to size, subdivide each size decile into 10 portfolios on the basis of pre-ranking Beta for individual stocksThe pre-ranking Betas are estimated on 24 t

58、o 60 monthly observations (as available) in the 5 years before July of year tSet the Beta breakpoints for each size decile using only NYSE stocksAfter assigning firms to the size-Beta portfolios in June, calculate the equal-weighted monthly portfolio returns from July to June.Fama and French (1992):

59、 Beta estimation (3)Estimate Beta using the full sample (330 months) of post-ranking returns on each of the 100 portfolios, with CRSP value-weighted portfolio of NYSE,AMEX, and NASDAQ stocks as proxy for the market.Estimate Beta as the sum of the slopes in the regression of the portfolio return on t

60、he current and prior months market return (nonsynchronous trading)Allocate the full-period post-ranking Beta of a size- portfolio to each stock in the portfolioFama and French (1992): Fama-MacBeth cross sectional regressions Table III The CAPM is very simple: Only one source of risk market risk affe

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论