2022年河北省邢台市高考全国统考预测密卷数学试卷含解析_第1页
2022年河北省邢台市高考全国统考预测密卷数学试卷含解析_第2页
2022年河北省邢台市高考全国统考预测密卷数学试卷含解析_第3页
2022年河北省邢台市高考全国统考预测密卷数学试卷含解析_第4页
2022年河北省邢台市高考全国统考预测密卷数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1点在所在的平面内,且,则( )ABCD2已知实数满足线性约束条件,则的取值范围为( )A(-2,-1B(-1,4C-2,4)D0,43已知函数是上的偶函数,是的奇函数,且,

2、则的值为( )ABCD4数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为.给出下列四个结论:曲线有四条对称轴;曲线上的点到原点的最大距离为;曲线第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为;四叶草面积小于.其中,所有正确结论的序号是( )ABCD5单位正方体ABCD-,黑、白两蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”白蚂蚁爬地的路线是AA1A1D1,黑蚂蚁爬行的路线是ABBB1,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(iN*).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两

3、蚂蚁的距离是( )A1BCD06的展开式中的系数为( )A30B40C40D507已知复数z=2i1-i,则z的共轭复数在复平面对应的点位于( )A第一象限B第二象限C第三象限D第四象限8偶函数关于点对称,当时,求( )ABCD9下图为一个正四面体的侧面展开图,为的中点,则在原正四面体中,直线与直线所成角的余弦值为( )ABCD10已知变量x,y间存在线性相关关系,其数据如下表,回归直线方程为,则表中数据m的值为( )变量x0123变量y35.57A0.9B0.85C0.75D0.511已知全集,集合,则=( )ABCD12集合的子集的个数是( )A2B3C4D8二、填空题:本题共4小题,每小

4、题5分,共20分。13李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元每笔订单顾客网上支付成功后,李明会得到支付款的80%当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付_元;在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为_14,则f(f(2)的值为_15假如某人有壹元、贰元、伍元、拾元、贰拾元、伍拾元、壹佰元的纸币各两张,要支付贰佰壹拾玖(219)元的货款,则有_种不同的支付方式.16正方

5、形的边长为2,圆内切于正方形,为圆的一条动直径,点为正方形边界上任一点,则的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数.(1)若,求实数的取值范围;(2)证明:,恒成立.18(12分)如图,在三棱柱中,、分别是、的中点.(1)证明:平面;(2)若底面是正三角形,在底面的投影为,求到平面的距离.19(12分)如图,直线y=2x-2与抛物线x2=2py(p0)交于M1,M2两点,直线y=p2与y轴交于点F,且直线y=p2恰好平分M1FM2.(1)求p的值;(2)设A是直线y=p2上一点,直线AM2交抛物线于另一点M3,直线M1M3交直线y=p2

6、于点B,求OAOB的值.20(12分)某企业生产一种产品,从流水线上随机抽取件产品,统计其质量指标值并绘制频率分布直方图(如图1):规定产品的质量指标值在的为劣质品,在的为优等品,在的为特优品,销售时劣质品每件亏损元,优等品每件盈利元,特优品每件盈利元,以这件产品的质量指标值位于各区间的频率代替产品的质量指标值位于该区间的概率(1)求每件产品的平均销售利润;(2)该企业主管部门为了解企业年营销费用(单位:万元)对年销售量(单位:万件)的影响,对该企业近年的年营销费用和年销售量,数据做了初步处理,得到的散点图(如图2)及一些统计量的值表中,根据散点图判断,可以作为年销售量(万件)关于年营销费用(

7、万元)的回归方程求关于的回归方程;用所求的回归方程估计该企业每年应投入多少营销费,才能使得该企业的年收益的预报值达到最大?(收益销售利润营销费用,取)附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,21(12分)某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次普查,为此需要抽验1000人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案:将每个人的血分别化验,这时需要验1000次.方案:按个人一组进行随机分组,把从每组个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这个人的血只需检验一

8、次(这时认为每个人的血化验次);否则,若呈阳性,则需对这个人的血样再分别进行一次化验,这样,该组个人的血总共需要化验次.假设此次普查中每个人的血样化验呈阳性的概率为,且这些人之间的试验反应相互独立.(1)设方案中,某组个人的每个人的血化验次数为,求的分布列;(2)设,试比较方案中,分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)22(10分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,为等边三角形,平面平面ABCD,M,N分别是线段PD和BC的中点.(1)求直线CM与平面PAB所成角的正弦

9、值;(2)求二面角D-AP-B的余弦值;(3)试判断直线MN与平面PAB的位置关系,并给出证明.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】确定点为外心,代入化简得到,再根据计算得到答案.【详解】由可知,点为外心,则,又,所以因为,联立方程可得,因为,所以,即故选:【点睛】本题考查了向量模长的计算,意在考查学生的计算能力.2B【解析】作出可行域,表示可行域内点与定点连线斜率,观察可行域可得最小值【详解】作出可行域,如图阴影部分(含边界),表示可行域内点与定点连线斜率,过与直线平行的直线斜率为1,故选:B【点睛】本题考

10、查简单的非线性规划解题关键是理解非线性目标函数的几何意义,本题表示动点与定点连线斜率,由直线与可行域的关系可得结论3B【解析】根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出.【详解】为上的奇函数,而函数是上的偶函数,故为周期函数,且周期为故选:B【点睛】本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.4C【解析】利用之间的代换判断出对称轴的条数;利用基本不等式求解出到原点的距离最大值;将面积转化为的关系式,然后根据基本不等式求解出最大值;根据满足的不等式判断出四叶草与对应圆的关系,从而判断出面积是否小于.【详解】:当变为时, 不变,所以四叶草

11、图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;综上可知:有四条对称轴,故正确;:因为,所以,所以,所以,取等号时,所以最大距离为,故错误;:设任意一点,所以围成的矩形面积为,因为,所以,所以,取等号时,所以围成矩形面积的最大值为,故正确;:由可知,所以四叶草包含在圆的内部,因为圆的面积为:,所以四叶草的面积小于,故正确.故选:C.【点睛】本题考查曲线与方程的综合运用,其中涉及到曲线的对称性分析以及基本不等式的运用,难度较难.分析方程所表示曲线的对称性,可通过替换方程中去分析证明.5B【解析】根据规则

12、,观察黑蚂蚁与白蚂蚁经过几段后又回到起点,得到每爬1步回到起点,周期为1计算黑蚂蚁爬完2020段后实质是到达哪个点以及计算白蚂蚁爬完2020段后实质是到达哪个点,即可计算出它们的距离【详解】由题意,白蚂蚁爬行路线为AA1A1D1D1C1C1CCBBA,即过1段后又回到起点,可以看作以1为周期,由,白蚂蚁爬完2020段后到回到C点;同理,黑蚂蚁爬行路线为ABBB1B1C1C1D1D1DDA,黑蚂蚁爬完2020段后回到D1点,所以它们此时的距离为.故选B.【点睛】本题考查多面体和旋转体表面上的最短距离问题,考查空间想象与推理能力,属于中等题.6C【解析】先写出的通项公式,再根据的产生过程,即可求得

13、.【详解】对二项式,其通项公式为的展开式中的系数是展开式中的系数与的系数之和.令,可得的系数为;令,可得的系数为;故的展开式中的系数为.故选:C.【点睛】本题考查二项展开式中某一项系数的求解,关键是对通项公式的熟练使用,属基础题.7C【解析】分析:根据复数的运算,求得复数z,再利用复数的表示,即可得到复数对应的点,得到答案详解:由题意,复数z=2i1-i=2i1+i1-i1+i=-1+i,则z=-1-i所以复数z在复平面内对应的点的坐标为(-1,-1),位于复平面内的第三象限,故选C点睛:本题主要考查了复数的四则运算及复数的表示,其中根据复数的四则运算求解复数z是解答的关键,着重考查了推理与运

14、算能力8D【解析】推导出函数是以为周期的周期函数,由此可得出,代值计算即可.【详解】由于偶函数的图象关于点对称,则,则,所以,函数是以为周期的周期函数,由于当时,则.故选:D.【点睛】本题考查利用函数的对称性和奇偶性求函数值,推导出函数的周期性是解答的关键,考查推理能力与计算能力,属于中等题.9C【解析】将正四面体的展开图还原为空间几何体,三点重合,记作,取中点,连接,即为与直线所成的角,表示出三角形的三条边长,用余弦定理即可求得.【详解】将展开的正四面体折叠,可得原正四面体如下图所示,其中三点重合,记作:则为中点,取中点,连接,设正四面体的棱长均为,由中位线定理可得且,所以即为与直线所成的角

15、, ,由余弦定理可得,所以直线与直线所成角的余弦值为,故选:C.【点睛】本题考查了空间几何体中异面直线的夹角,将展开图折叠成空间几何体,余弦定理解三角形的应用,属于中档题.10A【解析】计算,代入回归方程可得【详解】由题意,解得故选:A.【点睛】本题考查线性回归直线方程,解题关键是掌握性质:线性回归直线一定过中心点11D【解析】先计算集合,再计算,最后计算【详解】解:,故选:【点睛】本题主要考查了集合的交,补混合运算,注意分清集合间的关系,属于基础题12D【解析】先确定集合中元素的个数,再得子集个数【详解】由题意,有三个元素,其子集有8个故选:D【点睛】本题考查子集的个数问题,含有个元素的集合

16、其子集有个,其中真子集有个二、填空题:本题共4小题,每小题5分,共20分。13130. 15. 【解析】由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得的最大值.【详解】(1),顾客一次购买草莓和西瓜各一盒,需要支付元.(2)设顾客一次购买水果的促销前总价为元,元时,李明得到的金额为,符合要求.元时,有恒成立,即,即元.所以的最大值为.【点睛】本题主要考查不等式的概念与性质数学的应用意识数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.141【解析】先求f(1),再根据f(1)值所在区间求f(f(1).【详解

17、】由题意,f(1)=log3(111)=1,故f(f(1)=f(1)=1e11=1,故答案为:1【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.151【解析】按照个位上的9元的支付情况分类,三个数位上的钱数分步计算,相加即可【详解】9元的支付有两种情况,或者,当9元采用方式支付时,200元的支付方式为,或者或者共3种方式,10元的支付只能用1张10元,此时共有种支付方式;当9元采用方式支付时:200元的支付方式为,或者或者共3种方式,10元的支付只能用1张10元,此时共有种支付方式;所以总的支付方式共有种故答案为:1【点睛】本题考查了分类加法计数原理和分步乘法计数原理,属于中档题做题

18、时注意分类做到不重不漏,分步做到步骤完整16【解析】根据向量关系表示,只需求出的取值范围即可得解.【详解】由题可得:,故答案为:【点睛】此题考查求平面向量数量积的取值范围,涉及基本运算,关键在于恰当地对向量进行转换,便于计算解题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)证明见解析【解析】(1)将不等式化为,利用零点分段法,求得不等式的解集.(2)将要证明的不等式转化为证,恒成立,由的最小值为,得到只要证,即证,利用绝对值不等式和基本不等式,证得上式成立.【详解】(1),即当时,不等式化为,当时,不等式化为,此时无解当时,不等式化为,综上,原不等式的解集为(

19、2)要证,恒成立即证,恒成立的最小值为2,只需证,即证又成立,原题得证【点睛】本题考查绝对值不等式的性质、解法,基本不等式等知识;考查推理论证能力、运算求解能力;考查化归与转化,分类与整合思想.18(1)证明见解析;(2).【解析】(1)连接,连接、交于点,并连接,则点为的中点,利用中位线的性质得出,利用空间平行线的传递性可得出,然后利用线面平行的判定定理可证得结论;(2)推导出平面,并计算出,由此可得出到平面的距离为,即可得解.【详解】(1)连接,连接、交于点,并连接,则点为的中点,、分别为、的中点,则,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影为,平面,平面,为正三角形,且

20、为的中点,平面,且,因此,到平面的距离为.【点睛】本题考查线面平行的证明,同时也考查了点到平面距离的计算,考查推理能力与计算能力,属于中等题.19(1)p=4;(2)OAOB=20.【解析】试题分析:(1)联立直线的方程和抛物线的方程y=2x-2x2=2py,化简写出根与系数关系,由于直线y=p2平分M1FM2,所以kM1F+kM2F=0,代入点的坐标化简得4-(2+p2)x1+x2x1x2=0,结合跟鱼系数关系,可求得p=4;(2)设M3(x3,x328),A(t,2),B(a,2),由A,M2,M3,三点共线得kM2M3=kAM2,再次代入点的坐标并化简得x2x3-t(x2+x3)=-16

21、,同理由B,M3,M1三点共线,可得x1x3-a(x1+x3)=-16,化简得at=16,故OAOB=at+4=16+4=20.试题解析:(1)由y=2x-2x2=2py,整理得x2-4px+4p=0,设M1(x1,y1),M2(x2,y2),则=16p2-16p0 x1+x2=4px1x2=4p,因为直线y=p2平分M1FM2,kM1F+kM2F=0,所以y1-p2x1+y2-p2x2=0,即2x1-2-p2x1+2x2-2-p2x2=0,所以4-(2+p2)x1+x2x1x2=0,得p=4,满足0,所以p=4.(2)由(1)知抛物线方程为x2=8y,且x1+x2=16x1x2=16,M1(

22、x1,x128),M2(x2,x228),设M3(x3,x328),A(t,2),B(a,2),由A,M2,M3,三点共线得kM2M3=kAM2,所以x2+x38=x228-2x2-t,即,整理得:x2x3-t(x2+x3)=-16,由B,M3,M1三点共线,可得x1x3-a(x1+x3)=-16,式两边同乘x2得:x1x2x3-a(x1x2+x2x3)=-16x2,即:16x3-a(16+x2x3)=-16x2,由得:x2x3=t(x2+x3)-16,代入得:16x3-16a-ta(x2+x3)+16a=-16x2,即:16(x2+x3)=at(x2+x3),所以at=16.所以OAOB=a

23、t+4=16+4=20.考点:直线与圆锥曲线的位置关系.【方法点晴】本题考查直线与抛物线的位置关系.阅读题目后明显发现,所有的点都是由直线和抛物线相交或者直线与直线相交所得.故第一步先联立y=2x-2x2=2py,相当于得到M1,M2的坐标,但是设而不求.根据直线y=p2平分M1FM2,有kM1F+kM2F=0,这样我们根据斜率的计算公式k=y2-y1x2-x1,代入点的坐标,就可以计算出p的值.第二问主要利用三点共线来求解.20(1)元(2)万元【解析】(1)每件产品的销售利润为,由已知可得的取值,由频率分布直方图可得劣质品、优等品、特优品的概率,从而可得的概率分布列,依期望公式计算出期望即

24、为平均销售利润;(2)对取自然对数,得,令,则,这就是线性回归方程,由所给公式数据计算出系数,得线性回归方程,从而可求得;求出收益,可设换元后用导数求出最大值【详解】解:(1)设每件产品的销售利润为,则的可能取值为,由频率分布直方图可得产品为劣质品、优等品、特优品的概率分别为、所以;所以的分布列为所以(元)即每件产品的平均销售利润为元(2)由,得,令,则,由表中数据可得,则,所以,即,因为取,所以,故所求的回归方程为设年收益为万元,则令,则,当时,当时,所以当,即时,有最大值即该企业每年应该投入万元营销费,能使得该企业的年收益的预报值达到最大,最大收益为万元【点睛】本题考查频率分布直方图,考查随机变量概率分布列与期望,考查求线性回归直线方程,及回归方程的应用在求指数型回归方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论