




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线 (a0,b0)的右焦点为F,若过点F且倾斜角为60的直线l与双曲线的右支有且只有一
2、个交点,则此双曲线的离心率e的取值范围是( )AB(1,2),CD2函数y=sin2x的图象可能是ABCD3已知集合,则的值域为()ABCD4已知的展开式中的常数项为8,则实数( )A2B-2C-3D35已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为、元)甲、乙租车费用为元的概率分别是、,甲、乙租车费用为元的概率分别是、,则甲、乙两人所扣租车费用相同的概率为( )ABCD6某几何体的三视图如图所示,则该几何体的体积为( )ABCD7已知数列an满足a1=3,且an+1=4an+3 (nN*),则数列an的通项公式为( )A22n-1+1B22n-1-1C22n+1D22n-18已
3、知底面是等腰直角三角形的三棱锥P-ABC的三视图如图所示,俯视图中的两个小三角形全等,则( )APA,PB,PC两两垂直B三棱锥P-ABC的体积为CD三棱锥P-ABC的侧面积为9方程的实数根叫作函数的“新驻点”,如果函数的“新驻点”为,那么满足( )ABCD10甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是( )A甲B乙C丙D丁11我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:,那么在不超过18的素数中随机选取两个不同
4、的数,其和等于16的概率为( )ABCD12已知正项等比数列的前项和为,则的最小值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1 000名学生的成绩,并根据这1 000名学生的成绩画出样本的频率分布直方图(如图),则成绩在250,400)内的学生共有_人14已知函数在处的切线与直线平行,则为_.15已知是偶函数,则的最小值为_.16若曲线(其中常数)在点处的切线的斜率为1,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在三棱柱中, 平面ABC.
5、(1)证明:平面平面(2)求二面角的余弦值.18(12分)已知是等腰直角三角形,分别为的中点,沿将折起,得到如图所示的四棱锥()求证:平面平面()当三棱锥的体积取最大值时,求平面与平面所成角的正弦值19(12分)如图,直角三角形所在的平面与半圆弧所在平面相交于,,,分别为,的中点, 是上异于,的点, .(1)证明:平面平面;(2)若点为半圆弧上的一个三等分点(靠近点)求二面角的余弦值.20(12分)在平面直角坐标系中,已知抛物线的焦点为,准线为,是抛物线上上一点,且点的横坐标为,.(1)求抛物线的方程;(2)过点的直线与抛物线交于、两点,过点且与直线垂直的直线与准线交于点,设的中点为,若、四点
6、共圆,求直线的方程.21(12分)已知函数.(1)解关于的不等式;(2)若函数的图象恒在直线的上方,求实数的取值范围22(10分)如图,在四棱锥中,和均为边长为的等边三角形.(1)求证:平面平面;(2)求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率根据这个结论可以求出双曲线离心率的取值范围【详解】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线
7、的斜率,离心率,故选:【点睛】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件2D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令, 因为,所以为奇函数,排除选项A,B;因为时,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复3A【解析】先求出集合,化简=,令,得由二次函数的性质即可得值域.【详解】由,得 ,令, ,所以得 , 在 上递
8、增,在上递减, ,所以,即 的值域为故选A【点睛】本题考查了二次不等式的解法、二次函数最值的求法,换元法要注意新变量的范围,属于中档题4A【解析】先求的展开式,再分类分析中用哪一项与相乘,将所有结果为常数的相加,即为展开式的常数项,从而求出的值.【详解】展开式的通项为,当取2时,常数项为,当取时,常数项为由题知,则.故选:A.【点睛】本题考查了两个二项式乘积的展开式中的系数问题,其中对所取的项要进行分类讨论,属于基础题.5B【解析】甲、乙两人所扣租车费用相同即同为1元,或同为2元,或同为3元,由独立事件的概率公式计算即得【详解】由题意甲、乙租车费用为3元的概率分别是,甲、乙两人所扣租车费用相同
9、的概率为故选:B【点睛】本题考查独立性事件的概率掌握独立事件的概率乘法公式是解题基础6D【解析】结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可.【详解】由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积,下半部分的正三棱柱的体积,故该几何体的体积.故选:D.【点睛】本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题.7D【解析】试题分析:因为an+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1=4,所以数列an+1
10、是以a1+1=4为首项,公比为4的等比数列,所以an+1=44n-1=4n=22n,即an=22n-1,所以数列an的通项公式是an=22n-1,故选D考点:数列的通项公式8C【解析】根据三视图,可得三棱锥P-ABC的直观图,然后再计算可得.【详解】解:根据三视图,可得三棱锥P-ABC的直观图如图所示,其中D为AB的中点,底面ABC.所以三棱锥P-ABC的体积为,、不可能垂直,即不可能两两垂直,.三棱锥P-ABC的侧面积为.故正确的为C.故选:C.【点睛】本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题.9D【解析】由题设中所给的定义,方程的实数根叫做函数的“新驻点”,
11、根据零点存在定理即可求出的大致范围【详解】解:由题意方程的实数根叫做函数的“新驻点”,对于函数,由于,设,该函数在为增函数, ,在上有零点,故函数的“新驻点”为,那么故选:【点睛】本题是一个新定义的题,理解定义,分别建立方程解出存在范围是解题的关键,本题考查了推理判断的能力,属于基础题.10C【解析】分别假设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,即可求得答案.【详解】假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,年纪最大的不是甲;假设乙说的是真话,则年纪最大的是乙,那么甲说谎
12、,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,年纪最大的也不是乙;假设丙说的是真话,则年纪最大的是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,年纪最大的也不是乙;假设丁说的是真话,则年纪最大的不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是年纪最大的,同时乙也说谎,说明乙也不是年纪最大的,年纪最大的只有一人,所以只有丙才是年纪最大的,故假设成立,年纪最大的是丙.综上所述,年纪最大的是丙故选:C.【点睛】本题考查合情推理,解题时可从一种情形出发,推理出矛盾的结论,说明这种情形不会发生,考查了分析能力和推理能力,属于中档题.11B【
13、解析】先求出从不超过18的素数中随机选取两个不同的数的所有可能结果,然后再求出其和等于16的结果,根据等可能事件的概率公式可求.【详解】解:不超过18的素数有2,3,5,7,11,13,17共7个,从中随机选取两个不同的数共有,其和等于16的结果,共2种等可能的结果,故概率.故选:B.【点睛】古典概型要求能够列举出所有事件和发生事件的个数,本题不可以列举出所有事件但可以用分步计数得到,属于基础题.12D【解析】由,可求出等比数列的通项公式,进而可知当时,;当时,从而可知的最小值为,求解即可.【详解】设等比数列的公比为,则,由题意得,得,解得,得.当时,;当时,则的最小值为.故选:D.【点睛】本
14、题考查等比数列的通项公式的求法,考查等比数列的性质,考查学生的计算求解能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13750【解析】因为0.001+0.001+0.004+a+0.005+0.00350=1,得a=0.006,所以10000.004+0.006+0.00550=750。14【解析】根据题意得出,由此可得出实数的值.【详解】,直线的斜率为,由于函数在处的切线与直线平行,则.故答案为:.【点睛】本题考查利用函数的切线与直线平行求参数,解题时要结合两直线的位置关系得出两直线斜率之间的关系,考查计算能力,属于基础题.152【解析】由偶函数性质可得,解得,再结合基本
15、不等式即可求解【详解】令得,所以,当且仅当时取等号.故答案为:2【点睛】考查函数的奇偶性、基本不等式,属于基础题16【解析】利用导数的几何意义,由解方程即可.【详解】由已知,所以,解得.故答案为:.【点睛】本题考查导数的几何意义,考查学生的基本运算能力,是一道基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析 (2)【解析】(1)证明平面即平面平面得证;(2)分别以所在直线为x轴,y轴.轴,建立如图所示的空间直角坐标系C-xyz,再利用向量方法求二面角的余弦值.【详解】(1)证明:因为平面ABC,所以 因为.所以.即 又.所以平面 因为平面.所以平面平面
16、 (2)解:由题可得两两垂直,所以分别以所在直线为x轴,y轴.轴,建立如图所示的空间直角坐标系C-xyz,则,所以 设平面的一个法向量为,由.得令,得 又平面,所以平面的一个法向量为. 所以二面角的余弦值为.【点睛】本题主要考查空间几何位置关系的证明,考查二面角的计算,意在考查学生对这些知识的理解掌握水平.18 ()见解析. () .【解析】(I)证明平面得出平面,根据面面垂直的判定定理得到结论;(II)当平面时,棱锥体积最大,建立空间坐标系,计算两平面的法向量,计算法向量的夹角得出答案【详解】(I)证明: 分别为的中点 ,又平面平面,又平面平面平面(II),为定值当平面时,三棱锥的体积取最大
17、值以为原点,以为坐标轴建立空间直角坐标系则,设平面的法向量为,则即,令可得平面 是平面的一个法向量平面与平面所成角的正弦值为【点睛】本题考查了面面垂直的判定,二面角的计算,关键是能够根据体积的最值确定垂直关系,从而可以建立起空间直角坐标系,利用空间向量法求得二面角,属于中档题19(1)详见解析;(2).【解析】(1)由直径所对的圆周角为,可知,通过计算,利用勾股定理的逆定理可以判断出为直角三角形,所以有.由已知可以证明出,这样利用线面垂直的判定定理可以证明平面,利用面面垂直的判定定理可以证明出平面平面;(2)以为坐标原点,分别以垂直于平面向上的方向、向量所在方向作为轴、轴、轴的正方向,建立如图
18、所示的空间直角坐标系,求出相应点的坐标,求出平面的一个法向量和平面的法向量,利用空间向量数量积运算公式,可以求出二面角的余弦值.【详解】解:(1)证明:因为半圆弧上的一点,所以.在中,分别为的中点,所以,且.于是在中, ,所以为直角三角形,且. 因为,,所以. 因为, 所以平面.又平面,所以平面平面. (2)由已知,以为坐标原点,分别以垂直于、向量所在方向作为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,则,, ,. 设平面的一个法向量为,则即,取,得. 设平面的法向量,则即,取,得. 所以, 又二面角为锐角,所以二面角的余弦值为. 【点睛】本题考查了利用线面垂直判定面面垂直、利用空间向量数量积求二面角的余弦值问题.20(1)(2)【解析】(1)由抛物线的定义可得,即可求出,从而得到抛物线方程;(2)设直线的方程为,代入,得.设,列出韦达定理,表示出中点的坐标,若、四点共圆,再结合,得,则即可求出参数,从而得解;【详解】解:(1)由抛物线定义,得,解得,所以抛物线的方程为.(2)设直线的方程为,代入,得.设,则,.由,得,所以.因为直线的斜率为,所以直线的斜率为,则直线的方程为.由解得.若、四点共圆,再结合,得,则,解得,所以直线的方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论