版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合A=x|y=lg(4x2),B=y|y=3x,x0时,AB=( )Ax|x2 Bx|1x2 Cx|1x2 D2设全集为R,集合,则ABCD3已知函数,给出下列四个结
2、论:函数的值域是;函数为奇函数;函数在区间单调递减;若对任意,都有成立,则的最小值为;其中正确结论的个数是( )ABCD4已知抛物线:的焦点为,准线为,是上一点,直线与抛物线交于,两点,若,则为( )AB40C16D5用一个平面去截正方体,则截面不可能是( )A正三角形B正方形C正五边形D正六边形6 “”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7已知,是两条不重合的直线,是两个不重合的平面,则下列命题中错误的是( )A若,则或B若,则C若,则D若,则8是的( )条件A充分不必要B必要不充分C充要D既不充分也不必要9如图是一个算法流程图,则输出的结果是()A
3、BCD10已知等差数列满足,公差,且成等比数列,则A1B2C3D411某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)为( )AB6CD12设,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13复数(其中i为虚数单位)的共轭复数为_.14在中,若,则 _15如图,在ABC中,E为边AC上一点,且,P为BE上一点,且满足,则的最小值为_16在的二项展开式中,所有项的系数之和为1024,则展开式常数项的值等于_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在角中,角A、B、C的对边分别是a、b、c,若(1)求角A;(2)若的面积为,求的
4、周长18(12分)在中,内角的对边分别是,已知.(1)求角的值;(2)若,求的面积19(12分)已知函数(,)满足下列3个条件中的2个条件:函数的周期为;是函数的对称轴;且在区间上单调.()请指出这二个条件,并求出函数的解析式;()若,求函数的值域.20(12分)如图,三棱锥中,.(1)求证:;(2)求直线与平面所成角的正弦值.21(12分)如图在直角中,为直角,分别为,的中点,将沿折起,使点到达点的位置,连接,为的中点()证明:面;()若,求二面角的余弦值22(10分)如图,三棱台的底面是正三角形,平面平面,.(1)求证:;(2)若,求直线与平面所成角的正弦值.参考答案一、选择题:本题共12
5、小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】试题分析:由集合A中的函数y=lg(4-x2),得到4-x20,解得:-2x2,集合A=x|-2x0,得到y1,集合B=y|y1,则AB=x|1x2,故选B考点:交集及其运算2B【解析】分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.3C【解析】化的解析式为可判断,求出的解析式可判断,由得,结合正弦函数得图象即可判断,由得可判断.【详解】由题意,
6、所以,故正确;为偶函数,故错误;当时,单调递减,故正确;若对任意,都有成立,则为最小值点,为最大值点,则的最小值为,故正确.故选:C.【点睛】本题考查三角函数的综合运用,涉及到函数的值域、函数单调性、函数奇偶性及函数最值等内容,是一道较为综合的问题.4D【解析】如图所示,过分别作于,于,利用和,联立方程组计算得到答案.【详解】如图所示:过分别作于,于.,则,根据得到:,即,根据得到:,即,解得,故.故选:.【点睛】本题考查了抛物线中弦长问题,意在考查学生的计算能力和转化能力.5C【解析】试题分析:画出截面图形如图显然A正三角形,B正方形:D正六边形,可以画出五边形但不是正五边形;故选C考点:平
7、面的基本性质及推论6B【解析】或,从而明确充分性与必要性.【详解】,由可得:或,即能推出,但推不出“”是“”的必要不充分条件故选【点睛】本题考查充分性与必要性,简单三角方程的解法,属于基础题.7D【解析】根据线面平行和面面平行的性质,可判定A;由线面平行的判定定理,可判断B;C中可判断,所成的二面角为;D中有可能,即得解.【详解】选项A:若,根据线面平行和面面平行的性质,有或,故A正确;选项B:若,由线面平行的判定定理,有,故B正确;选项C:若,故,所成的二面角为,则,故C正确;选项D,若,有可能,故D不正确.故选:D【点睛】本题考查了空间中的平行垂直关系判断,考查了学生逻辑推理,空间想象能力
8、,属于中档题.8B【解析】利用充分条件、必要条件与集合包含关系之间的等价关系,即可得出。【详解】设对应的集合是,由解得且 对应的集合是 ,所以,故是的必要不充分条件,故选B。【点睛】本题主要考查充分条件、必要条件的判断方法集合关系法。设 ,如果,则是的充分条件;如果B则是的充分不必要条件;如果,则是的必要条件;如果,则是的必要不充分条件。9A【解析】执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案【详解】由题意,执行上述的程序框图:第1次循环:满足判断条件,;第2次循环:满足判断条件,;第3次循环:满足判断条件,;不满足判断条件,输出计算结果,故选A【点睛】本题主要考查了循环结
9、构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题10D【解析】先用公差表示出,结合等比数列求出.【详解】,因为成等比数列,所以,解得.【点睛】本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.11D【解析】根据几何体的三视图,该几何体是由正方体去掉三棱锥得到,根据正方体和三棱锥的体积公式可求解.【详解】如图,该几何体为正方体去掉三棱锥,所以该几何体的体积为:,故选:D【点睛】本题主要考查了空间几何体的三视图以及体积的求法,考查了空间想象力,属于中档题.12C【解析】试题分析:
10、,故C正确考点:复合函数求值二、填空题:本题共4小题,每小题5分,共20分。13【解析】利用复数的乘法运算求出,再利用共轭复数的概念即可求解.【详解】由,则.故答案为:【点睛】本题考查了复数的四则运算以及共轭复数的概念,属于基础题.14【解析】分析:首先设出相应的直角边长,利用余弦勾股定理得到相应的斜边长,之后应用余弦定理得到直角边长之间的关系,从而应用正切函数的定义,对边比临边,求得对应角的正切值,即可得结果.详解:根据题意,设,则,根据, 得,由勾股定理可得,根据余弦定理可得,化简整理得,即,解得,所以,故答案是.点睛:该题考查的是有关解三角形的问题,在解题的过程中,注意分析要求对应角的正
11、切值,需要求谁,而题中所给的条件与对应的结果之间有什么样的连线,设出直角边长,利用所给的角的余弦值,利用余弦定理得到相应的等量关系,求得最后的结果.15【解析】试题分析:根据题意有,因为三点共线,所以有,从而有,所以的最小值是考点:向量的运算,基本不等式【方法点睛】该题考查的是有关应用基本不等式求最值的问题,属于中档题目,在解题的过程中,关键步骤在于对题中条件的转化,根据三点共线,结合向量的性质可知,从而等价于已知两个正数的整式形式和为定值,求分式形式和的最值的问题,两式乘积,最后应用基本不等式求得结果,最后再加,得出最后的答案16【解析】利用展开式所有项系数的和得n=5,再利用二项式展开式的
12、通项公式,求得展开式中的常数项.【详解】因为的二项展开式中,所有项的系数之和为4n=1024, n=5,故的展开式的通项公式为Tr+1=C35-r,令,解得r=4,可得常数项为T5=C3=15,故填15.【点睛】本题主要考查了二项式定理的应用、二项式系数的性质,二项式展开式的通项公式,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)1.【解析】(1)由正弦定理化简已知等式可得sinAsinB=sinBcosA,求得tanA=,结合范围A(0,),可求A=(2)利用三角形的面积公式可求bc=8,由余弦定理解得b+c=7,即可得解ABC的周长的值【详解】
13、(1)由题意,在中,因为,由正弦定理,可得sinAsinB=sinBcosA,又因为,可得sinB0,所以sinA=cosA,即:tanA=,因为A(0,),所以A=;(2)由(1)可知A=,且a=5,又由ABC的面积2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以ABC的周长a+b+c=5+7=1【点睛】本题主要考查了正弦定理,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题18(1);(2)【解析】(
14、1)由已知条件和正弦定理进行边角互化得,再根据余弦定理可求得值.(2)由正弦定理得,代入得,运用三角形的面积公式可求得其值.【详解】(1)由及正弦定理得,即由余弦定理得,.(2)设外接圆的半径为,则由正弦定理得,.【点睛】本题考查运用三角形的正弦定理、余弦定理、三角形的面积公式,关键在于熟练地运用其公式,合理地选择进行边角互化,属于基础题.19()只有成立,;().【解析】()依次讨论成立,成立,成立,计算得到只有成立,得到答案.()得到,得到函数值域.【详解】()由可得,;由得:,;由得,;若成立,则,若成立,则,不合题意,若成立,则,与中的矛盾,所以不成立,所以只有成立,.()由题意得,所
15、以函数的值域为.【点睛】本题考查了三角函数的周期,对称轴,单调性,值域,表达式,意在考查学生对于三角函数知识的综合应用.20(1)证明见详解;(2)【解析】(1)取中点,根据,利用线面垂直的判定定理,可得平面,最后可得结果.(2)利用建系,假设长度, 可得,以及平面的一个法向量,然后利用向量的夹角公式,可得结果.【详解】(1)取中点,连接,如图由,所以由,平面所以平面,又平面所以(2)假设,由,.所以则,所以又,平面所以平面,所以,又,故建立空间直角坐标系,如图设平面的一个法向量为则令,所以则直线与平面所成角的正弦值为【点睛】本题考查线面垂直、线线垂直的应用,还考查线面角,学会使用建系的方法来
16、解决立体几何问题,将几何问题代数化,化繁为简,属中档题.21()详见解析;().【解析】()取中点,连结、,四边形是平行四边形,由,得,从而,求出,由此能证明()以为原点,、所在直线分别为,轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值【详解】证明:( )取中点,连结、, , 四边形是平行四边形, , , ,在中,又 为的中点,又 ,解:(), ,以为原点,、所在直线分别为,轴,建立空间直角坐标系,设,则, ,设面的法向量,则,取,得,同理,得平面的法向量,设二面角的平面角为,则, 二面角的余弦值为【点睛】本题考查面面垂直及线面垂直性质定理、线面垂直判定与性质定理以及利用空间向量求线面角与二面角,考查基本分析求解能力,属中档题22()见证明;()【解析】()取的中点为,连结,易证四边形为平行四边形,即,由于,为的中点,可得到,从而得到,即可证明平面,从而得到;()易证,两两垂直,以,分别为,轴,建立如图所示的空间直角坐标系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流服务师创新思维强化考核试卷含答案
- 2025年三明学院马克思主义基本原理概论期末考试模拟题附答案
- 口腔修复体制作师安全生产基础知识能力考核试卷含答案
- 搪瓷瓷釉制作工QC管理能力考核试卷含答案
- 燃气具制造工岗后竞赛考核试卷含答案
- 纤维板原料制备工安全教育竞赛考核试卷含答案
- 轧管工岗前创新应用考核试卷含答案
- 2024年湖北大学辅导员招聘备考题库附答案
- 2024年贵州轻工职业技术学院辅导员考试笔试题库附答案
- 2024年莱芜市特岗教师招聘考试真题题库附答案
- 2025年金蝶AI苍穹平台新一代企业级AI平台报告-
- 2025中国机械工业集团有限公司(国机集团)社会招聘19人笔试参考题库附答案
- 浅析煤矿巷道快速掘进技术
- 成人留置导尿标准化护理与并发症防控指南
- 2025年劳动关系协调师综合评审试卷及答案
- CIM城市信息模型技术创新中心建设实施方案
- 班级互动小游戏-课件共30张课件-小学生主题班会版
- 2025至2030全球及中国智慧机场建设行业发展趋势分析与未来投资战略咨询研究报告
- 2025年二级造价师《土建工程实务》真题卷(附解析)
- 智慧农业管理中的信息安全对策
- 2025年河南省康养行业职业技能竞赛健康管理师赛项技术工作文件
评论
0/150
提交评论