




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,为两个平面,则的充要条件是A内有无数条直线与平行B内有两条相交直线与平行C,平行于同一条直线D,垂直于同一平面
2、2国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是( )A12个月的PMI值不低于50%的频率为B12个月的PMI值的平均值低于50%C12个月的PMI值的众数为49.4%D12个月的PMI值的中位数为50.3%3蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系;用均匀投点实现统计模拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验法.现向一边长为的正方形模型内均匀投点,落入阴影部分的概率为,则圆周率( )ABCD4根据最小二
3、乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是( )A至少有一个样本点落在回归直线上B若所有样本点都在回归直线上,则变量同的相关系数为1C对所有的解释变量(),的值一定与有误差D若回归直线的斜率,则变量x与y正相关5已知函数,若不等式对任意的恒成立,则实数k的取值范围是( )ABCD6设集合A=4,5,7,9,B=3,4,7,8,9,全集U=AB,则集合中的元素共有 ( )A3个B4个C5个D6个7已知是虚数单位,则( )ABCD8已知数列满足:,则( )A16B25C28D339已知定义在上函数的图象关于原点对称,且,若,则( )A0B1C673D67410集合中含有的元素个
4、数为( )A4B6C8D1211已知,那么是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件12九章算术有如下问题:“今有金箠,长五尺,斩本一尺,重四斤;斩末一尺,重二斤,问次一尺各重几何?”意思是:“现在有一根金箠, 长五尺在粗的一端截下一尺,重斤;在细的一端截下一尺,重斤,问各尺依次重多少?”按这一问题的颗设,假设金箠由粗到细各尺重量依次成等差数列,则从粗端开始的第二尺的重量是( )A斤B 斤C斤D斤二、填空题:本题共4小题,每小题5分,共20分。13已知函数的定义域为R,导函数为,若,且,则满足的x的取值范围为_.14已知函数,则曲线在点处的切线方程为_.15函数
5、的图象在处的切线与直线互相垂直,则_16某校初三年级共有名女生,为了了解初三女生分钟“仰卧起坐”项目训练情况,统计了所有女生分钟“仰卧起坐”测试数据(单位:个),并绘制了如下频率分布直方图,则分钟至少能做到个仰卧起坐的初三女生有_个三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)若函数在处有极值,且,则称为函数的“F点”.(1)设函数().当时,求函数的极值;若函数存在“F点”,求k的值;(2)已知函数(a,b,)存在两个不相等的“F点”,且,求a的取值范围.18(12分)已知函数(1)若,求证:(2)若,恒有,求实数的取值范围.19(12分)某大学开学期间,该大学
6、附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案规定每日底薪100元,外卖业务每完成一单提成2元;方案规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为七组,整理得到如图所示的频率分布直方图.(1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率;(2)从以往统计数据看,新聘骑手选择日工资方案的概率为,选择方案的概率为.若甲、乙、丙、丁四名骑手分别到该快餐店应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案的概率,(3)若仅从人日均
7、收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)20(12分)传染病的流行必须具备的三个基本环节是:传染源、传播途径和人群易感性.三个环节必须同时存在,方能构成传染病流行.呼吸道飞沫和密切接触传播是新冠状病毒的主要传播途径,为了有效防控新冠状病毒的流行,人们出行都应该佩戴口罩.某地区已经出现了新冠状病毒的感染病人,为了掌握该地区居民的防控意识和防控情况,用分层抽样的方法从全体居民中抽出一个容量为100的样本,统计样本中每个人出行是否会佩戴口罩的情况,得到下面列联表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握认为是否会
8、佩戴口罩出行的行为与年龄有关?(2)用样本估计总体,若从该地区出行不戴口罩的居民中随机抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82821(12分)某工厂生产一种产品的标准长度为,只要误差的绝对值不超过就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:(1)估计该批次产品长度误差绝对值的数学期望;(2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求
9、,求出符合要求时,生产一件产品为标准长度的概率的最小值.22(10分)随着电子阅读的普及,传统纸质媒体遭受到了强烈的冲击某杂志社近9年来的纸质广告收入如下表所示: 根据这9年的数据,对和作线性相关性检验,求得样本相关系数的绝对值为0.243;根据后5年的数据,对和作线性相关性检验,求得样本相关系数的绝对值为0.984.(1)如果要用线性回归方程预测该杂志社2019年的纸质广告收入,现在有两个方案,方案一:选取这9年数据进行预测,方案二:选取后5年数据进行预测从实际生活背景以及线性相关性检验的角度分析,你觉得哪个方案更合适?附:相关性检验的临界值表:(2)某购物网站同时销售某本畅销书籍的纸质版本
10、和电子书,据统计,在该网站购买该书籍的大量读者中,只购买电子书的读者比例为,纸质版本和电子书同时购买的读者比例为,现用此统计结果作为概率,若从上述读者中随机调查了3位,求购买电子书人数多于只购买纸质版本人数的概率参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断【详解】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是
11、的必要条件,故选B【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,则”此类的错误2D【解析】根据图形中的信息,可得频率、平均值的估计、众数、中位数,从而得到答案.【详解】对A,从图中数据变化看,PMI值不低于50%的月份有4个,所以12个月的PMI值不低于50%的频率为,故A正确;对B,由图可以看出,PMI值的平均值低于50%,故B正确;对C,12个月的PMI值的众数为49.4%,故C正确,;对D,12个月的PMI值的中位数为49.6%,故D错误故选:D.【点睛】本题考查频率、平均值的估计、众数、中位数计算,考查数据处理能力,属于基础题.3A
12、【解析】计算出黑色部分的面积与总面积的比,即可得解.【详解】由,.故选:A【点睛】本题考查了面积型几何概型的概率的计算,属于基础题.4D【解析】对每一个选项逐一分析判断得解.【详解】回归直线必过样本数据中心点,但样本点可能全部不在回归直线上故A错误;所有样本点都在回归直线上,则变量间的相关系数为,故B错误;若所有的样本点都在回归直线上,则的值与相等,故C错误;相关系数r与符号相同,若回归直线的斜率,则,样本点分布应从左到右是上升的,则变量x与y正相关,故D正确故选D【点睛】本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.5A【解析】先求出函数在处的切线方程,在
13、同一直角坐标系内画出函数和的图象,利用数形结合进行求解即可.【详解】当时,所以函数在处的切线方程为:,令,它与横轴的交点坐标为.在同一直角坐标系内画出函数和的图象如下图的所示:利用数形结合思想可知:不等式对任意的恒成立,则实数k的取值范围是.故选:A【点睛】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.6A【解析】试题分析:,所以,即集合中共有3个元素,故选A考点:集合的运算7B【解析】根据复数的乘法运算法则,直接计算,即可得出结果.【详解】.故选B【点睛】本题主要考查复数的乘法,熟记运算法则即可,属于基础题型.8C【解析】依次递推求出得解.【详解】n=1时,n
14、=2时,n=3时,n=4时,n=5时,.故选:C【点睛】本题主要考查递推公式的应用,意在考查学生对这些知识的理解掌握水平.9B【解析】由题知为奇函数,且可得函数的周期为3,分别求出知函数在一个周期内的和是0,利用函数周期性对所求式子进行化简可得.【详解】因为为奇函数,故;因为,故,可知函数的周期为3;在中,令,故,故函数在一个周期内的函数值和为0,故.故选:B.【点睛】本题考查函数奇偶性与周期性综合问题. 其解题思路:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解10B【解析】解:因为集合中的元素表示的是被1
15、2整除的正整数,那么可得为1,2,3,4,6,,12故选B11B【解析】由,可得,解出即可判断出结论【详解】解:因为,且,解得是的必要不充分条件故选:【点睛】本题考查了向量数量积运算性质、三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题12B【解析】依题意,金箠由粗到细各尺重量构成一个等差数列,则,由此利用等差数列性质求出结果【详解】设金箠由粗到细各尺重量依次所成得等差数列为,设首项,则,公差,.故选B【点睛】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13【解析】构造函数,再根据条件确定为奇函数且在上
16、单调递减,最后利用单调性以及奇偶性化简不等式,解得结果.【详解】依题意,令,则,故函数为奇函数,故函数在上单调递减,则,即,故,则x的取值范围为.故答案为:【点睛】本题考查函数奇偶性、单调性以及利用函数性质解不等式,考查综合分析求解能力,属中档题.14【解析】根据导数的几何意义求出切线的斜率,利用点斜式求切线方程.【详解】因为,所以,又故切线方程为,整理为,故答案为:【点睛】本题主要考查了导数的几何意义,切线方程,属于容易题.151.【解析】求函数的导数,根据导数的几何意义结合直线垂直的直线斜率的关系建立方程关系进行求解即可【详解】函数的图象在处的切线与直线垂直,函数的图象在的切线斜率 本题正
17、确结果:【点睛】本题主要考查直线垂直的应用以及导数的几何意义,根据条件建立方程关系是解决本题的关键16【解析】根据数据先求出,再求出分钟至少能做到个仰卧起坐的初三女生人数即可.【详解】解:,.则分钟至少能做到个仰卧起坐的初三女生人数为.故答案为:.【点睛】本题主要考查频率分布直方图,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)极小值为1,无极大值.实数k的值为1.(2)【解析】(1)将代入可得,求导讨论函数单调性,即得极值;设是函数的一个“F点”(),即是的零点,那么由导数可知,且,可得,根据可得,设,由的单调性可得,即得.(2)方法一:先求的导数,存在
18、两个不相等的“F点”,可以由和韦达定理表示出,的关系,再由,可得的关系式,根据已知解即得.方法二:由函数存在不相等的两个“F点”和,可知,是关于x的方程组的两个相异实数根,由得,分两种情况:是函数一个“F点”,不是函数一个“F点”,进行讨论即得.【详解】解:(1)当时, (),则有(),令得,列表如下:x10极小值故函数在处取得极小值,极小值为1,无极大值.设是函数的一个“F点”().(),是函数的零点.,由,得,由,得,即.设,则,所以函数在上单调增,注意到,所以方程存在唯一实根1,所以,得,根据知,时,是函数的极小值点,所以1是函数的“F点”.综上,得实数k的值为1.(2)由(a,b,),
19、可得().又函数存在不相等的两个“F点”和,是关于x的方程()的两个相异实数根.又,即,从而,即.,解得.所以,实数a的取值范围为.(2)(解法2)因为( a,b,)所以().又因为函数存在不相等的两个“F点”和,所以,是关于x的方程组的两个相异实数根.由得,.(2.1)当是函数一个“F点”时,且.所以,即.又,所以,所以.又,所以.(2.2)当不是函数一个“F点”时,则,是关于x的方程的两个相异实数根.又,所以得所以,得.所以,得.综合(2.1)(2.2),实数a的取值范围为.【点睛】本题考查利用导数求函数极值,以及由函数的极值求参数值等,是一道关于函数导数的综合性题目,考查学生的分析和数学
20、运算能力,有一定难度.18(1)见解析;(2)(,0【解析】(1)利用导数求x0时,f(x)的极大值为,即证(2)等价于k,x0,令g(x),x0,再求函数g(x)的最小值得解.【详解】(1)函数f(x)x2e3x,f(x)2xe3x+3x2e3xx(3x+2)e3x由f(x)0,得x或x0;由f(x)0,得,f(x)在(,)内递增,在(,0)内递减,在(0,+)内递增,f(x)的极大值为,当x0时,f(x)(2)x2e3x(k+3)x+2lnx+1,k,x0,令g(x),x0,则g(x),令h(x)x2(1+3x)e3x+2lnx1,则h(x)在(0,+)上单调递增,且x0+时,h(x),h
21、(1)4e310,存在x0(0,1),使得h(x0)0,当x(0,x0)时,g(x)0,g(x)单调递减,当x(x0,+)时,g(x)0,g(x)单调递增,g(x)在(0,+)上的最小值是g(x0),h(x0)+2lnx01=0,所以,令,令所以=1,,g(x0) 实数k的取值范围是(,0【点睛】本题主要考查利用证明不等式,考查利用导数求最值和解答不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.19(1)0.4;(2);(3)应选择方案,理由见解析【解析】(1)根据频率分布直方图,可求得该快餐店的骑手的人均日外卖业务量不少于65单的频率,即可估算其概率;(2)根据独立重
22、复试验概率求法,先求得四人中有0人、1人选择方案的概率,再由对立事件概率性质即可求得至少有两名骑手选择方案的概率;(3)设骑手每日完成外卖业务量为件,分别表示出方案的日工资和方案的日工资函数解析式,即可计算两种计算方式下的数学期望,并根据数学期望作出选择.【详解】(1)设事件为“随机选取一天,这一天该快餐店的骑手的人均日外卖业务量不少于65单”.根据频率分布直方图可知快餐店的人均日外卖业务量不少于65单的频率分别为,估计为0.4.(2)设事件为“甲、乙、丙、丁四名骑手中至少有两名骑手选择方案”,设事件,为“甲、乙、丙、丁四名骑手中恰有人选择方案”,则,所以四名骑手中至少有两名骑手选择方案的概率
23、为.(3)设骑手每日完成外卖业务量为件,方案的日工资,方案的日工资,所以随机变量的分布列为 160180200220240260280 0.050.050.20.30.20.150.05;同理,随机变量的分布列为 150180230280330 0.30.30.20.150.05.,建议骑手应选择方案.【点睛】本题考查了频率分布直方图的简单应用,独立重复试验概率的求法,数学期望的求法并由期望作出方案选择,属于中档题.20(1)有的把握认为是否戴口罩出行的行为与年龄有关.(2)【解析】(1) 根据列联表和独立性检验的公式计算出观测值,从而由参考数据作出判断.(2) 因为样本中出行不戴口罩的居民有
24、30人,其中年轻人有10人,用样本估计总体,则出行不戴口罩的年轻人的概率为,是老年人的概率为.根据独立重复事件的概率公式即可求得结果.【详解】(1)由题意可知,有的把握认为是否戴口罩出行的行为与年龄有关.(2)由样本估计总体,出行不戴口罩的年轻人的概率为,是老年人的概率为.人未戴口罩,恰有2人是青年人的概率.【点睛】本题主要考查独立性检验及独立重复事件的概率求法,难度一般.21(1)(2)【解析】(1)根据题意即可写出该批次产品长度误差的绝对值的频率分布列,再根据期望公式即可求出;(2)由(1)可知,任取一件产品是标准长度的概率为0.4,即可求出随机抽取2件产品,都不是标准长度产品的概率,由对
25、立事件的概率公式即可得到随机抽取2件产品,至少有1件是标准长度产品的概率,判断其是否符合生产要求;当不符合要求时,设生产一件产品为标准长度的概率为,可根据上述方法求出,解,即可得出最小值.【详解】(1)由柱状图,该批次产品长度误差的绝对值的频率分布列为下表:00.010.020.030.04频率0.40.30.20.0750.025所以的数学期望的估计为.(2)由(1)可知任取一件产品是标准长度的概率为0.4,设至少有1件是标准长度产品为事件,则,故不符合概率不小于0.8的要求.设生产一件产品为标准长度的概率为,由题意,又,解得,所以符合要求时,生产一件产品为标准长度的概率的最小值为.【点睛】本题主要考查离散型随机变
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 豪宅项目转让协议书范本
- 货运司机兼职合同协议
- 贷款采购供销合同协议
- 货场钢材回收合同协议
- 走账免责协议书模板
- 设备共享协议书范本
- 货运公路运输合同协议
- 解除就业协议书模板
- 2025年矿山安全与环境保护专业考试题及答案
- 2025年聚合物化学入门考试题及答案
- 肺胀病(慢性阻塞性肺疾病)中医临床路径
- 中央分隔带填土规范
- 港口散装液体危险化学品港口经营人的装卸管理人员从业资格考试
- 深基坑专项施工方案专家论证会议签到表
- 强化学习与联邦学习结合
- 关于新能源汽车的论文10000字
- 停车场建设工程监理规划
- 中型水力发电厂电气部分初步设计
- 2023山西焦煤集团有限责任公司井下操作工招聘2000人笔试模拟试题及答案解析
- 分红险、万能险销售资质考试真题模拟汇编(共763题)
- 高水平专业群《环境艺术设计专业群》自评报告
评论
0/150
提交评论