




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,关于x的方程f(x)a存在四个不同实数根,则实数a的取值范围是( )A(0,1)(1,e)BCD(0,1)2自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取
2、了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有( )A12种B24种C36种D72种3在中,角的对边分别为,若则角的大小为()ABCD4一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是( )ABCD5已知双曲线(,)的左、右顶点分别为,虚轴的两个端点分别为,若四边形的内切圆面积为,则双曲线焦距的最小值为( )A8B16CD6若,则的值为( )ABCD7已知,且,则
3、( )ABCD8若,则( )ABCD9已知函数,则函数的图象大致为( )ABCD10已知,则( )ABCD11在的展开式中,的系数为( )A-120B120C-15D1512已知等式成立,则( )A0B5C7D13二、填空题:本题共4小题,每小题5分,共20分。13已知,且,则_14三所学校举行高三联考,三所学校参加联考的人数分别为160,240,400,为调查联考数学学科的成绩,现采用分层抽样的方法在这三所学校中抽取样本,若在学校抽取的数学成绩的份数为30,则抽取的样本容量为_.15一次考试后,某班全班50个人数学成绩的平均分为正数,若把当成一个同学的分数,与原来的50个分数一起,算出这51
4、个分数的平均值为,则_16锐角中,角,所对的边分别为,若,则的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在中,角的对边分别为,且满足,线段的中点为.()求角的大小;()已知,求的大小.18(12分)如图,三棱台中, 侧面与侧面是全等的梯形,若,且.()若,证明:平面;()若二面角为,求平面与平面所成的锐二面角的余弦值.19(12分)已知正项数列的前项和.(1)若数列为等比数列,求数列的公比的值;(2)设正项数列的前项和为,若,且.求数列的通项公式;求证:.20(12分)已知椭圆C的中心在坐标原点,其短半轴长为1,一个焦点坐标为,点在椭圆上,
5、点在直线上,且(1)证明:直线与圆相切;(2)设与椭圆的另一个交点为,当的面积最小时,求的长21(12分)如图,在中,点在上,.(1)求的值;(2)若,求的长.22(10分)某工厂生产某种电子产品,每件产品不合格的概率均为,现工厂为提高产品声誉,要求在交付用户前每件产品都通过合格检验,已知该工厂的检验仪器一次最多可检验件该产品,且每 件产品检验合格与否相互独立若每件产品均检验一次,所需检验费用较多,该工厂提出以下检 验方案:将产品每个一组进行分组检验,如果某一组产品检验合格,则说明该组内产品均合格,若检验不合格,则说明该组内有不合格产品,再对该组内每一件产品单独进行检验,如此,每一组产品只需检
6、验次或次设该工厂生产件该产品,记每件产品的平均检验次 数为 (1)求的分布列及其期望;(2)(i)试说明,当越小时,该方案越合理,即所需平均检验次数越少;(ii)当时,求使该方案最合理时的值及件该产品的平均检验次数参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】原问题转化为有四个不同的实根,换元处理令t,对g(t)进行零点个数讨论.【详解】由题意,a2,令t,则f(x)a记g(t)当t2时,g(t)2ln(t)(t)单调递减,且g(2)2,又g(2)2,只需g(t)2在(2,+)上有两个不等于2的不等根则,记h(t)(t
7、2且t2),则h(t)令(t),则(t)2(2)2,(t)在(2,2)大于2,在(2,+)上小于2h(t)在(2,2)上大于2,在(2,+)上小于2,则h(t)在(2,2)上单调递增,在(2,+)上单调递减由,可得,即a2实数a的取值范围是(2,2)故选:D【点睛】此题考查方程的根与函数零点问题,关键在于等价转化,将问题转化为通过导函数讨论函数单调性解决问题.2C【解析】先将4名医生分成3组,其中1组有2人,共有种选法,然后将这3组医生分配到3个不同的住户中去,有种方法,由分步原理可知共有种.【详解】不同分配方法总数为种.故选:C【点睛】此题考查的是排列组合知识,解此类题时一般先组合再排列,属
8、于基础题.3A【解析】由正弦定理化简已知等式可得,结合,可得,结合范围,可得,可得,即可得解的值【详解】解:,由正弦定理可得:,故选A【点睛】本题主要考查了正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题4D【解析】首先判断循环结构类型,得到判断框内的语句性质,然后对循环体进行分析,找出循环规律,判断输出结果与循环次数以及的关系,最终得出选项【详解】经判断此循环为“直到型”结构,判断框为跳出循环的语句,第一次循环:;第二次循环:;第三次循环:,此时退出循环,根据判断框内为跳出循环的语句,故选D【点睛】题主要考查程序框图的循环结构流程图,属于中档题 解决程序框图问题时一定注意以下
9、几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可5D【解析】根据题意画出几何关系,由四边形的内切圆面积求得半径,结合四边形面积关系求得与等量关系,再根据基本不等式求得的取值范围,即可确定双曲线焦距的最小值.【详解】根据题意,画出几何关系如下图所示:设四边形的内切圆半径为,双曲线半焦距为,则所以,四边形的内切圆面积为,则,解得,则,
10、即故由基本不等式可得,即,当且仅当时等号成立.故焦距的最小值为.故选:D【点睛】本题考查了双曲线的定义及其性质的简单应用,圆锥曲线与基本不等式综合应用,属于中档题.6A【解析】取,得到,取,则,计算得到答案.【详解】取,得到;取,则.故.故选:.【点睛】本题考查了二项式定理的应用,取和是解题的关键.7B【解析】分析:首先利用同角三角函数关系式,结合题中所给的角的范围,求得的值,之后借助于倍角公式,将待求的式子转化为关于的式子,代入从而求得结果.详解:根据题中的条件,可得为锐角,根据,可求得,而,故选B.点睛:该题考查的是有关同角三角函数关系式以及倍角公式的应用,在解题的过程中,需要对已知真切求
11、余弦的方法要明确,可以应用同角三角函数关系式求解,也可以结合三角函数的定义式求解.8D【解析】直接利用二倍角余弦公式与弦化切即可得到结果【详解】,故选D【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,同角三角函数关系式的应用,主要考查学生的运算能力和转化能力,属于基础题型9A【解析】用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像.【详解】设,由于,排除B选项;由于,所以,排除C选项;由于当时,排除D选项.故A选项正确.故选:A【点睛】本题考查了函数图像的性质,属于中档题.10D【解析】令,求,利用导数判断函数为单调递增,从而可得,设,
12、利用导数证出为单调递减函数,从而证出,即可得到答案.【详解】时,令,求导,故单调递增:,当,设, ,又,即,故.故选:D【点睛】本题考查了作差法比较大小,考查了构造函数法,利用导数判断式子的大小,属于中档题.11C【解析】写出展开式的通项公式,令,即,则可求系数【详解】的展开式的通项公式为,令,即时,系数为故选C【点睛】本题考查二项式展开的通项公式,属基础题12D【解析】根据等式和特征和所求代数式的值的特征用特殊值法进行求解即可.【详解】由可知:令,得;令,得;令,得,得,而,所以.故选:D【点睛】本题考查了二项式定理的应用,考查了特殊值代入法,考查了数学运算能力.二、填空题:本题共4小题,每
13、小题5分,共20分。13【解析】试题分析:因,故,所以,,应填.考点:三角变换及运用14【解析】某层抽取的人数等于该层的总人数乘以抽样比.【详解】设抽取的样本容量为x,由已知,解得.故答案为:【点睛】本题考查随机抽样中的分层抽样,考查学生基本的运算能力,是一道容易题.151【解析】根据均值的定义计算【详解】由题意,故答案为:1【点睛】本题考查均值的概念,属于基础题16【解析】由余弦定理,正弦定理得出,从而得出,推出的范围,由余弦函数的性质得出的范围,再利用二倍角公式化简,即可得出答案.【详解】由题意得由正弦定理得化简得又为锐角三角形,则,.故答案为【点睛】本题主要考查了正弦定理和余弦定理的应用
14、,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17();().【解析】()由正弦定理边化角,再结合转化即可求解;()可设,由,再由余弦定理解得,对中,由余弦定理有,通过勾股定理逆定理可得,进而得解【详解】()由正弦定理得.而.由以上两式得,即.由于,所以,又由于,得.()设,在中,由正弦定理有.由余弦定理有,整理得,由于,所以.在中,由余弦定理有.所以,所以.【点睛】本题考查正弦定理和余弦定理的综合运用,属于中档题18 ()见解析;() .【解析】试题分析:() 连接,由比例可得,进而得线面平行;()过点作的垂线,建立空间直角坐标系,不妨设,则求得平面的法向量为,
15、设平面的法向量为,由求二面角余弦即可.试题解析:()证明:连接,梯形,,易知:;又,则;平面,平面,可得:平面;()侧面是梯形,,则为二面角的平面角, ;均为正三角形,在平面内,过点作的垂线,如图建立空间直角坐标系,不妨设,则,故点,;设平面的法向量为,则有:;设平面的法向量为,则有:;,故平面与平面所成的锐二面角的余弦值为.19(1);(2);详见解析.【解析】(1)依题意可表示,相减得,由等比数列通项公式转化为首项与公比,解得答案,并由其都是正项数列舍根; (2)由题意可表示,两式相减得,由其都是正项并整理可得递推关系,由等差数列的通项公式即可得答案;由已知关系,表示并相减即可表示递推关系
16、,显然当时,成立,当,时,表示,由分组求和与正项数列性质放缩不等式得证.【详解】解:(1)依题意可得,两式相减,得,所以,因为,所以,且,解得.(2)因为,所以,两式相减,得,即.因为,所以,即.而当时,可得,故,所以对任意的正整数都成立,所以数列是等差数列,公差为1,首项为1,所以数列的通项公式为.因为,所以,两式相减,得,即,所以对任意的正整数,都有.令,而当时,显然成立,所以当,时,所以,即,所以,得证.【点睛】本题考查由前n项和关系求等比数列公比,求等差数列通项公式,还考查了由分组求和表示数列和并由正项数列放缩证明不等式,属于难题.20(1)见解析; (2).【解析】(1)分斜率为0,
17、斜率不存在,斜率不为0三种情况讨论,设的方程为,可求解得到,可得到的距离为1,即得证;(2)表示的面积为,利用均值不等式,即得解.【详解】(1)由题意,椭圆的焦点在x轴上,且,所以所以椭圆的方程为由点在直线上,且知的斜率必定存在,当的斜率为0时,于是,到的距离为1,直线与圆相切当的斜率不为0时,设的方程为,与联立得,所以,从而而,故的方程为,而在上,故,从而,于是此时,到的距离为1,直线与圆相切综上,直线与圆相切(2)由(1)知,的面积为,上式中,当且仅当等号成立,所以面积的最小值为1此时,点在椭圆的长轴端点,为不妨设为长轴左端点,则直线的方程为,代入椭圆的方程解得,即,所以【点睛】本题考查了直线和椭圆综合,考查了直线和圆的位置关系判断,面积的最值问题,考查了学生综合分析,数学运算能力,属于较难题.21 (1) ;(2).【解析】(1)由两角差的正弦公式计算;(2)由正弦定理求得,再由余弦定理求得【详解】(1)因为,所以.因为,所以,所以.(2)在中,由,得,在中,由余弦定理可得,所以.【点睛】本题考查两角差的正弦公式,考查正弦定理和余弦定理,属于中档题22
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行业标准和规范的应用试题及答案
- 清运合同协议书
- 借用协议书属于合同吗
- 面试题目定义及答案
- 退还合同协议书
- 合同更改协议书
- 脐橙合同协议书
- 修理安全合同协议书
- 合同协议书范文本
- 搬运承包合同协议书范本
- 农业文化创意产业园项目可行性研究报告
- 2025绿地集团购房合同样本
- GB/T 37507-2025项目、项目群和项目组合管理项目管理指南
- 2025年邮政社招笔试试题及答案
- 2025年保密观知识测试题及答案
- 【MOOC】天文探秘-南京大学 中国大学慕课MOOC答案
- 3D打印技术与应用智慧树知到期末考试答案2024年
- 三年级数学下册《面积》练习试卷及答案
- T∕CVIA 73-2019 视觉疲劳测试与评价方法 第2部分:量表评价方法
- 物流地理第八章商业布局和物流地理
- GB T 197-2018 普通螺纹 公差(高清版)
评论
0/150
提交评论