




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知是椭圆和双曲线的公共焦点,是它们的-一个公共点,且,设椭圆和双曲线的离心率分别为,则的关系为( )ABCD2已知复数,则的虚部为( )ABCD13已知集合,集合,则(
2、).ABCD4某几何体的三视图如图所示,则此几何体的体积为( )AB1CD5复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于( )ABCD6已知集合,且、都是全集(为实数集)的子集,则如图所示韦恩图中阴影部分所表示的集合为( )AB或CD7设,则( )ABCD8已知函数,其中,记函数满足条件:为事件,则事件发生的概率为ABCD9双曲线的渐近线方程为( )ABCD10若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师
3、的月退休金为( ). A6500元B7000元C7500元D8000元11已知命题:“关于的方程有实根”,若为真命题的充分不必要条件为,则实数的取值范围是( )ABCD12从装有除颜色外完全相同的3个白球和个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为,已知,则ABCD二、填空题:本题共4小题,每小题5分,共20分。13曲线在点处的切线方程是_.14已知向量,若,则_.15某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每
4、天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是_元.16已知点是抛物线的焦点,是该抛物线上的两点,若,则线段中点的纵坐标为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知抛物线的焦点为,点在抛物线上,直线过点,且与抛物线交于,两点(1)求抛物线的方程及点的坐标;(2)求的最大值18(12分)的内角、所对的边长分别为、,已知.(1)求的值;(2)若,点是线段的中点,求的面积.19(12分)已知椭圆:()的左、右顶点分别为、,焦距为2,点为椭圆上异于、的点,且直线和的斜率之积为.(1)求的方程;(2)设直线
5、与轴的交点为,过坐标原点作交椭圆于点,试探究是否为定值,若是,求出该定值;若不是,请说明理由.20(12分)在直角坐标系中,已知点,若以线段为直径的圆与轴相切.(1)求点的轨迹的方程;(2)若上存在两动点(A,B在轴异侧)满足,且的周长为,求的值.21(12分)已知a0,b0,a+b=2.()求的最小值;()证明:22(10分)在直角坐标系中,直线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)把曲线向下平移个单位,然后各点横坐标变为原来的倍得到曲线(纵坐标不变),设点是曲线上的一个动点,求它到直线的距离的最小值.参
6、考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】设椭圆的半长轴长为,双曲线的半长轴长为,根据椭圆和双曲线的定义得: ,解得,然后在中,由余弦定理得:,化简求解.【详解】设椭圆的长半轴长为,双曲线的长半轴长为 ,由椭圆和双曲线的定义得: ,解得,设,在中,由余弦定理得: , 化简得,即.故选:A【点睛】本题主要考查椭圆,双曲线的定义和性质以及余弦定理的应用,还考查了运算求解的能力,属于中档题.2C【解析】先将,化简转化为,再得到下结论.【详解】已知复数,所以,所以的虚部为-1.故选:C【点睛】本题主要考查复数的概念及运算,还
7、考查了运算求解的能力,属于基础题.3A【解析】算出集合A、B及,再求补集即可.【详解】由,得,所以,又,所以,故或.故选:A.【点睛】本题考查集合的交集、补集运算,考查学生的基本运算能力,是一道基础题.4C【解析】该几何体为三棱锥,其直观图如图所示,体积故选.5A【解析】根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.【详解】由于复数对应复平面上的点,则,因此,.故选:A.【点睛】本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题.6C【解析】根据韦恩图可确定所表示集合为,根据一元二次不等式解法和定义域的求法可求得集合,根据补集和交
8、集定义可求得结果.【详解】由韦恩图可知:阴影部分表示,.故选:.【点睛】本题考查集合运算中的补集和交集运算,涉及到一元二次不等式和函数定义域的求解;关键是能够根据韦恩图确定所求集合.7C【解析】试题分析:,故C正确考点:复合函数求值8D【解析】由得,分别以为横纵坐标建立如图所示平面直角坐标系,由图可知,.9C【解析】根据双曲线的标准方程,即可写出渐近线方程.【详解】 双曲线,双曲线的渐近线方程为,故选:C【点睛】本题主要考查了双曲线的简单几何性质,属于容易题.10D【解析】设目前该教师的退休金为x元,利用条形图和折线图列出方程,求出结果即可【详解】设目前该教师的退休金为x元,则由题意得:600
9、015%x10%1解得x2故选D【点睛】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题11B【解析】命题p:,为,又为真命题的充分不必要条件为,故12B【解析】由题意知,由,知,由此能求出【详解】由题意知,解得,故选:B【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用二、填空题:本题共4小题,每小题5分,共20分。13【解析】利用导数的几何意义计算即可.【详解】由已知,所以,又,所以切线方程为,即.故答案为:【点睛】本题考查导数的几何意义,考查学生的基本计算能力,要注意在某点处的切线与过某点的切线的区别,是一道容易题.14-1【解析】由
10、向量垂直得向量的数量积为0,根据数量积的坐标运算可得结论【详解】由已知,故答案为:1【点睛】本题考查向量垂直的坐标运算掌握向量垂直与数量积的关系是解题关键151元【解析】设分别生产甲乙两种产品为 桶,桶,利润为元则根据题意可得目标函数 ,作出可行域,如图所示作直线 然后把直线向可行域平移,由图象知当直线经过 时,目标函数 的截距最大,此时 最大,由 可得,即 此时 最大 ,即该公司每天生产的甲4桶,乙4桶,可获得最大利润,最大利润为1【点睛】本题考查用线性规划知识求利润的最大值,根据条件建立不等式关系,以及利用线性规划的知识进行求解是解决本题的关键162【解析】运用抛物线的定义将抛物线上的点到
11、焦点距离等于到准线距离,然后求解结果.【详解】抛物线的标准方程为:,则抛物线的准线方程为,设,则,所以,则线段中点的纵坐标为.故答案为:【点睛】本题考查了抛物线的定义,由抛物线定义将点到焦点距离转化为点到准线距离,需要熟练掌握定义,并能灵活运用,本题较为基础.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1),;(2)1【解析】(1)根据抛物线上的点到焦点和准线的距离相等,可得p值,即可求抛物线C的方程从而可得解;(2)设直线l的方程为:x+my10,代入y24x,得,y2+4my40,设A(x1,y1),B(x2,y2),则y1+y24m,y1y24,x1+x22+4m
12、2,x1x21,(),(x22,),由此能求出的最大值【详解】(1)点F是抛物线y22px(p0)的焦点,P(2,y0)是抛物线上一点,|PF|3,23,解得:p2,抛物线C的方程为y24x,点P(2,n)(n0)在抛物线C上,n2428,由n0,得n2,P(2,2)(2)F(1,0),设直线l的方程为:x+my10,代入y24x,整理得,y2+4my40设A(x1,y1),B(x2,y2),则y1,y2是y2+4my40的两个不同实根,y1+y24m,y1y24,x1+x2(1my1)+(1my2)2m(y1+y2)2+4m2,x1x2(1my1)(1my2)1m(y1+y2)+m2y1y2
13、1+4m24m21,(),(x22,),(x12)(x22)+()()x1x22(x1+x2)+4148m2+44+8m+88m2+8m+58(m)2+1当m时,取最大值1【点睛】本题考查抛物线方程的求法,考查向量的数量积的最大值的求法,考查抛物线、直线方程、韦达定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题18(1)(2)【解析】(1)利用正弦定理的边化角公式,结合两角和的正弦公式,即可得出的值;(2)由题意得出,两边平方,化简得出,根据三角形面积公式,即可得出结论.【详解】(1)由正弦定理得即即在中,所以 (2)因为点是线段的中点,所以两边平方得由得整理得,解得或(舍)所以
14、的面积【点睛】本题主要考查了正弦定理的边化角公式,三角形的面积公式,属于中档题.19(1)(2)是定值,且定值为2【解析】(1)设出点坐标并代入椭圆方程,根据列方程,求得的值,结合求得的值,进而求得椭圆的方程.(2)设出直线的方程,联立直线的方程和椭圆方程,求得点的横坐标,联立直线的方程和椭圆方程,求得,由此化简求得为定值.【详解】(1)已知点在椭圆:()上,可设,即,又,且,可得椭圆的方程为.(2)设直线的方程为:,则直线的方程为.联立直线与椭圆的方程可得:,由,可得,联立直线与椭圆的方程可得:,即,即.即为定值,且定值为2.【点睛】本小题主要考查本小题主要考查椭圆方程的求法,考查椭圆中的定
15、值问题的求解,考查直线和椭圆的位置关系,考查运算求解能力,属于中档题.20(1);(2)【解析】(1)设,则由题设条件可得,化简后可得轨迹的方程.(2)设直线,联立直线方程和抛物线方程后利用韦达定理化简并求得,结合焦半径公式及弦长公式可求的值及的长.【详解】(1)设,则圆心的坐标为,因为以线段为直径的圆与轴相切,所以,化简得的方程为.(2)由题意,设直线,联立得,设 (其中)所以,且,因为,所以,所以,故或 (舍),直线,因为的周长为所以.即,因为.又,所以,解得,所以.【点睛】本题考查曲线方程以及抛物线中的弦长计算,还涉及到向量的数量积.一般地,抛物线中的弦长问题,一般可通过联立方程组并消元
16、得到关于或的一元二次方程,再把已知等式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有或,最后利用韦达定理把关系式转化为某一个变量的方程.本题属于中档题.21()最小值为;()见解析【解析】(1)根据题意构造平均值不等式,结合均值不等式可得结果;(2)利用分析法证明,结合常用不等式和均值不等式即可证明.【详解】()则当且仅当,即,时,所以的最小值为()要证明:,只需证:,即证明:,由,也即证明:因为,所以当且仅当时,有,即,当时等号成立所以【点睛】本题考查均值不等式,分析法证明不等式,审清题意,仔细计算,属中档题.22(1),;(2).【解析】(1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以得,进而可化简得出曲线的直角坐标方程;(2)根据变
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鼻肠管护理小讲课
- 人工关节置换手术的护理
- 河北沧州公开招聘农村(村务)工作者笔试题含答案2024年
- 颈椎病的保守治疗护理
- 欢送毕业生课件
- 护理生模仿患者体验活动大纲
- 外包测试合同协议
- 石块供应合同协议
- 租赁物资赔偿协议书范本
- 土地征收代理合同协议
- 2025商业综合体委托经营管理合同书
- 2024-2025学年北师大版生物七年级下册期中模拟生物试卷(含答案)
- 林业理论考试试题及答案
- 超市店长价格管理制度
- 2025-2030中国脑芯片模型行业市场发展趋势与前景展望战略研究报告
- 2025年河南省洛阳市洛宁县中考一模道德与法治试题(含答案)
- 掘进爆破、爆破安全知识
- GB/T 17622-2008带电作业用绝缘手套
- 压力性尿失禁讲稿
- 煤矿班组安全文化建设(课堂PPT)
- ISO15189体系性能验证报告模版-EP15
评论
0/150
提交评论