




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若,对任意恒有,在区间上有且只有一个使,则的最大值为( )ABCD2已知实数满足约束条件,则的最小值是ABC1D43若不等式对于一切恒成立,则的最小值是 ( )A0BCD4已知F为抛物线y24x的焦点,过点F且斜率为1的直线交抛物线
2、于A,B两点,则|FA|FB|的值等于()AB8CD45已知抛物线和点,直线与抛物线交于不同两点,直线与抛物线交于另一点给出以下判断:以为直径的圆与抛物线准线相离;直线与直线的斜率乘积为;设过点,的圆的圆心坐标为,半径为,则其中,所有正确判断的序号是( )ABCD6已知四棱锥的底面为矩形,底面,点在线段上,以为直径的圆过点.若,则的面积的最小值为( )A9B7CD7某中学有高中生人,初中生人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为的样本.若样本中高中生恰有人,则的值为( )ABCD8若为虚数单位,则复数,则在复平面内对应的点位于( )A第一象限B第二象限C
3、第三象限D第四象限9已知为一条直线,为两个不同的平面,则下列说法正确的是( )A若,则B若,则C若,则D若,则10已知是等差数列的前项和,则( )A85BC35D11已知是虚数单位,则复数( )ABC2D12已知集合A=y|y=|x|1,xR,B=x|x2,则下列结论正确的是( )A3A B3B CAB=B DAB=B二、填空题:本题共4小题,每小题5分,共20分。13若展开式的二项式系数之和为64,则展开式各项系数和为_14若函数为偶函数,则 15设(其中为自然对数的底数),若函数恰有4个不同的零点,则实数的取值范围为_.16对任意正整数,函数,若,则的取值范围是_;若不等式恒成立,则的最大
4、值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列是公比为正数的等比数列,其前项和为,满足,且成等差数列.(1)求的通项公式;(2)若数列满足,求的值.18(12分)某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1
5、),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.19(12分)在平面直角坐标系中,直线的参数方程为 (为参数)在以原点为极点,轴正半轴为极轴的极坐标系中,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求的值20(12分)已知各项均为正数的数列的前项和为,满足,恰为等比数列的前3项(1)求数列,的通项公式;(2)求数列的前项和为;若对均满足,求整数的最大值;(3)是否存在数列满足等式成立,若存
6、在,求出数列的通项公式;若不存在,请说明理由21(12分)已知函数.(1)若函数不存在单调递减区间,求实数的取值范围;(2)若函数的两个极值点为,求的最小值.22(10分)如图1,与是处在同-个平面内的两个全等的直角三角形,连接是边上一点,过作,交于点,沿将向上翻折,得到如图2所示的六面体(1)求证:(2)设若平面底面,若平面与平面所成角的余弦值为,求的值;(3)若平面底面,求六面体的体积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】根据的零点和最值点列方程组,求得的表达式(用表示),根据在上有且只有一个最大
7、值,求得的取值范围,求得对应的取值范围,由为整数对的取值进行验证,由此求得的最大值.【详解】由题意知,则其中,又在上有且只有一个最大值,所以,得,即,所以,又,因此当时,此时取可使成立,当时,所以当或时,都成立,舍去;当时,此时取可使成立,当时,所以当或时,都成立,舍去;当时,此时取可使成立,当时,所以当时,成立;综上所得的最大值为故选:C【点睛】本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.2B【解析】作出该不等式组表示的平面区域,如下图中阴影部分所示,设,则,易知当直线经过点时,z取得最小值,由,解得,所以,所
8、以,故选B3C【解析】试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论解:不等式x2+ax+10对一切x(0,成立,等价于a-x-对于一切成立,y=-x-在区间上是增函数a-a的最小值为-故答案为C考点:不等式的应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题4C【解析】将直线方程代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出的值【详解】F(1,0),故直线AB的方程为yx1,联立方程组,可得x26x+10,设A(x1,y1),B(x2,y2),由根与系数的关系可知x1+x26,x1x2
9、1由抛物线的定义可知:|FA|x1+1,|FB|x2+1,|FA|FB|x1x2|故选C【点睛】本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题5D【解析】对于,利用抛物线的定义,利用可判断;对于,设直线的方程为,与抛物线联立,用坐标表示直线与直线的斜率乘积,即可判断;对于,将代入抛物线的方程可得,从而,利用韦达定理可得,再由,可用m表示,线段的中垂线与轴的交点(即圆心)横坐标为,可得a,即可判断.【详解】如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点设,到准线的距离分别为,的半径为,点到准线的距离为,显然,三点不共线,则所以正确由题意可设直线的方程为,代入抛物线的方
10、程,有设点,的坐标分别为,则,所以则直线与直线的斜率乘积为所以正确将代入抛物线的方程可得,从而,根据抛物线的对称性可知,两点关于轴对称,所以过点,的圆的圆心在轴上由上,有,则所以,线段的中垂线与轴的交点(即圆心)横坐标为,所以于是,代入,得,所以所以正确故选:D【点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.6C【解析】根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到之间的等量关系,再用表示出的面积,利用均值不等式即可容易求得.【详解】设,则.因为平面,平面,所以.又,所以平面,则.易知,.在中,即,化简得.在中,.所以.因为,当
11、且仅当,时等号成立,所以.故选:C.【点睛】本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.7B【解析】利用某一层样本数等于某一层的总体个数乘以抽样比计算即可.【详解】由题意,解得.故选:B.【点睛】本题考查简单随机抽样中的分层抽样,某一层样本数等于某一层的总体个数乘以抽样比,本题是一道基础题.8B【解析】首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解.【详解】,则在复平面内对应的点的坐标为,位于第二象限.故选:B【点睛】本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.
12、9D【解析】A. 若,则或,故A错误;B. 若,则或故B错误;C. 若,则或,或与相交;D. 若,则,正确.故选D.10B【解析】将已知条件转化为的形式,求得,由此求得.【详解】设公差为,则,所以,.故选:B【点睛】本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题.11A【解析】根据复数的基本运算求解即可.【详解】.故选:A【点睛】本题主要考查了复数的基本运算,属于基础题.12C【解析】试题分析:集合 考点:集合间的关系二、填空题:本题共4小题,每小题5分,共20分。131【解析】由题意得展开式的二项式系数之和求出的值,然后再计算展开式各项系数的和.【详解】由题
13、意展开式的二项式系数之和为,即,故,令,则展开式各项系数的和为.故答案为:【点睛】本题考查了二项展开式的二项式系数和项的系数和问题,需要运用定义加以区分,并能够运用公式和赋值法求解结果,需要掌握解题方法.141【解析】试题分析:由函数为偶函数函数为奇函数,考点:函数的奇偶性【方法点晴】本题考查导函数的奇偶性以及逻辑思维能力、等价转化能力、运算求解能力、特殊与一般思想、数形结合思想与转化思想,具有一定的综合性和灵活性,属于较难题型首先利用转化思想,将函数为偶函数转化为 函数为奇函数,然后再利用特殊与一般思想,取15【解析】求函数,研究函数的单调性和极值,作出函数的图象,设,若函数恰有4个零点,则
14、等价为函数有两个零点,满足或,利用一元二次函数根的分布进行求解即可【详解】当时,由得:,解得,由得:,解得,即当时,函数取得极大值,同时也是最大值,(e),当,当,作出函数的图象如图,设,由图象知,当或,方程有一个根,当或时,方程有2个根,当时,方程有3个根,则,等价为,当时,若函数恰有4个零点,则等价为函数有两个零点,满足或,则,即(1) 解得:,故答案为:【点睛】本题主要考查函数与方程的应用,利用换元法进行转化一元二次函数根的分布以及求的导数,研究函数的的单调性和极值是解决本题的关键,属于难题16 【解析】将代入求解即可;当为奇数时,则转化为,设,由单调性求得的最小值;同理,当为偶数时,则
15、转化为,设,利用导函数求得的最小值,进而比较得到的最大值.【详解】由题,解得.当为奇数时,由,得,而函数为单调递增函数,所以,所以;当为偶数时,由,得,设,单调递增,所以,综上可知,若不等式恒成立,则的最大值为.故答案为:(1);(2)【点睛】本题考查利用导函数求最值,考查分类讨论思想和转化思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)【解析】(1)由公比表示出,由成等差数列可求得,从而数列的通项公式;(2)求(1)得,然后对和式两两并项后利用等差数列的前项和公式可求解【详解】(1)是等比数列,且成等差数列,即,解得:或,(2)【点睛】本题考查等比数列的通
16、项公式,考查并项求和法及等差数列的项和公式本题求数列通项公式所用方法为基本量法,求和是用并项求和法数列的求和除公式法外,还有错位相关法、裂项相消法、分组(并项)求和法等等18(1)分布见解析,期望为;(2).【解析】(1)先明确X的可能取值,分别求解其概率,然后写出分布列,利用期望公式可求期望;(2)获得的奖金恰好为60元,可能是三次二等奖,也可能是一次一等奖,两次三等奖,然后分别求解概率即可.【详解】(1)由题意知,随机变量X的可能取值为10,20,40且,所以,即随机变量X的概率分布为X102040P所以随机变量X的数学期望.(2)由题意知,赵四有三次抽奖机会,设恰好获得60元为事件A,因
17、为60203401010,所以【点睛】本题主要考查随机变量的分布列及数学期望,明确随机变量的所有取值是求解的第一步,再求解对应的概率,侧重考查数学建模的核心素养.19(1)(2)【解析】试题分析:(1)由加减消元得直线的普通方程,由得圆的直角坐标方程;(2)把直线l的参数方程代入圆C的直角坐标方程,由直线参数方程几何意义得|PA|+|PB|=|t1|+|t2|=t1+t2,再根据韦达定理可得结果试题解析:解:()由得直线l的普通方程为x+y3=0又由得 2=2sin,化为直角坐标方程为x2+(y)2=5;()把直线l的参数方程代入圆C的直角坐标方程,得(3t)2+(t)2=5,即t23t+4=
18、0设t1,t2是上述方程的两实数根,所以t1+t2=3又直线l过点P,A、B两点对应的参数分别为t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=320(2),(2),的最大整数是2(3)存在,【解析】(2)由可得(),然后把这两个等式相减,化简得,公差为2,因为,为等比数列,所以,化简计算得,从而得到数列的通项公式,再计算出 ,从而可求出数列的通项公式;(2)令,化简计算得,从而可得数列是递增的,所以只要的最小值大于即可,而的最小值为,所以可得答案;(3)由题意可知,即,这个可看成一个数列的前项和,再写出其前()项和,两式相减得,利用同样的方法可得.【详解】解:(2)由题,
19、当时,即当时, -得,整理得,又因为各项均为正数的数列故是从第二项的等差数列,公差为2又恰为等比数列的前3项,故,解得又,故,因为也成立故是以为首项,2为公差的等差数列故即2,4,8恰为等比数列的前3项,故是以为首项,公比为的等比数列,故综上,(2)令,则 所以数列是递增的,若对均满足,只要的最小值大于即可因为的最小值为,所以,所以的最大整数是2(3)由,得, -得, , -得,所以存在这样的数列,【点睛】此题考查了等差数列与等比数列的通项公式与求和公式,最值,恒成立问题,考查了推理能力与计算能力,属于中档题.21(1)(2)【解析】分析:(1)先求导,再令在上恒成立,得到上恒成立,利用基本不等式得到m的取值范围.(2)先由得到,再求得,再构造函数再利用导数求其最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗设备质量管理体系建设探讨
- 区款链技术助力企业实现办公自动化
- 乡下耕地出售合同范例
- 嗳气的临床护理
- 厦门市2025 届高三毕业班第四次质量检测-英语+答案
- 医疗数字化与区块链数字身份认证的协同发展
- 小学社团活动总结模版
- 医疗空间中的绿色疗愈效果探索
- 医疗服务流程优化对提高患者满意度的影响研究
- 光伏公司租赁合同范例
- 《大海》课件 图文
- 智慧管网项目建设方案
- 常用个人土地承包合同
- 【镀铬厂污水处理设计13000字(论文)】
- 2024年注册安全工程师考试题库及参考答案(完整版)
- 眼的解剖结构与生理功能课件
- DL-T 572-2021电力变压器运行规程-PDF解密
- 2023-2024学年人教版数学八年级下册期中训练卷
- 《17 他们那时候多有趣啊》公开课一等奖创新教学设计及反思
- 人教版 美术 三年级下册全册表格式教案教学设计
- 医院6s管理成果汇报护理课件
评论
0/150
提交评论