




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1周易是我国古代典籍,用“卦”描述了天地世间万象变化如图是一个八卦图,包含乾、坤、震、巽、坎、离
2、、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻)若从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为( )ABCD2已知七人排成一排拍照,其中甲、乙、丙三人两两不相邻,甲、丁两人必须相邻,则满足要求的排队方法数为( ).A432B576C696D9603若,则函数在区间内单调递增的概率是( )A B C D4已知为等腰直角三角形,为所在平面内一点,且,则( )ABCD5甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.甲同学成绩的中位数大于乙同学成绩的中位数;甲同学的平均分比乙同学的平均分高;甲同学的平均分比乙同学的平均分低;甲同学成绩的方差小于乙同学成
3、绩的方差.以上说法正确的是( )ABCD6已知集合则( )ABCD7已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为( )ABCD8某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为( )A1B2C3D09如图在一个的二面角的棱有两个点,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,则的长为( )A4BC2D10点为不等式组所表示的平面区域上的动点,则的取值范围是( )ABCD11点在所在的平面内,且,则( )ABCD12已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知抛物
4、线的焦点为,斜率为2的直线与的交点为,若,则直线的方程为_14已知,如果函数有三个零点,则实数的取值范围是_15已知向量,若向量与向量平行,则实数_16已知函数在处的切线与直线平行,则为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在四棱锥的底面中,平面,是的中点,且()求证:平面;()求二面角的余弦值;()线段上是否存在点,使得,若存在指出点的位置,若不存在请说明理由.18(12分)正项数列的前n项和Sn满足: (1)求数列的通项公式; (2)令,数列bn的前n项和为Tn,证明:对于任意的nN*,都有Tn .19(12分)在ABC中,角所对的边分别为向量,向
5、量,且.(1)求角的大小;(2)求的最大值.20(12分)如图,在三棱锥中,是的中点,点在上,平面,平面平面,为锐角三角形,求证:(1)是的中点;(2)平面平面.21(12分)已知,函数,(是自然对数的底数).()讨论函数极值点的个数;()若,且命题“,”是假命题,求实数的取值范围.22(10分)已知椭圆:的离心率为,右焦点为抛物线的焦点.(1)求椭圆的标准方程;(2)为坐标原点,过作两条射线,分别交椭圆于、两点,若、斜率之积为,求证:的面积为定值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】分类讨论,仅有一个阳爻的
6、有坎、艮、震三卦,从中取两卦;从仅有两个阳爻的有巽、离、兑三卦中取一个,再取没有阳爻的坤卦,计算满足条件的种数,利用古典概型即得解.【详解】由图可知,仅有一个阳爻的有坎、艮、震三卦,从中取两卦满足条件,其种数是;仅有两个阳爻的有巽、离、兑三卦,没有阳爻的是坤卦,此时取两卦满足条件的种数是,于是所求的概率故选:C【点睛】本题考查了古典概型的应用,考查了学生综合分析,分类讨论,数学运算的能力,属于基础题.2B【解析】先把没有要求的3人排好,再分如下两种情况讨论:1.甲、丁两者一起,与乙、丙都不相邻,2.甲、丁一起与乙、丙二者之一相邻.【详解】首先将除甲、乙、丙、丁外的其余3人排好,共有种不同排列方
7、式,甲、丁排在一起共有种不同方式;若甲、丁一起与乙、丙都不相邻,插入余下三人产生的空档中,共有种不同方式;若甲、丁一起与乙、丙二者之一相邻,插入余下三人产生的空档中,共有种不同方式;根据分类加法、分步乘法原理,得满足要求的排队方法数为种.故选:B.【点睛】本题考查排列组合的综合应用,在分类时,要注意不重不漏的原则,本题是一道中档题.3B【解析】函数在区间内单调递增, ,在恒成立, 在恒成立, , 函数在区间内单调递增的概率是,故选B.4D【解析】以AB,AC分别为x轴和y轴建立坐标系,结合向量的坐标运算,可求得点的坐标,进而求得,由平面向量的数量积可得答案.【详解】如图建系,则,由,易得,则.
8、故选:D【点睛】本题考查平面向量基本定理的运用、数量积的运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.5A【解析】由茎叶图中数据可求得中位数和平均数,即可判断,再根据数据集中程度判断.【详解】由茎叶图可得甲同学成绩的中位数为,乙同学成绩的中位数为,故错误;,则,故错误,正确;显然甲同学的成绩更集中,即波动性更小,所以方差更小,故正确,故选:A【点睛】本题考查由茎叶图分析数据特征,考查由茎叶图求中位数、平均数.6B【解析】解对数不等式可得集合A,由交集运算即可求解.【详解】集合解得由集合交集运算可得,故选:B.【点睛】本题考查了集合交集的简单运算,对数不等式解法,属于
9、基础题.7D【解析】将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,是增函数;当时,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;【详解】函数在内都有两个不同的零点,等价于方程在内都有两个不同的根.,所以当时,是增函数;当时,是减函数.因此.设,若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.设其解为,当时,在上是增函数;当时,在上是减函数.因为,方程在内有两个不同的根,所以,且.由,即,解得.由,即,所以.因为,所以,代入
10、,得.设,所以在上是增函数,而,由可得,得.由在上是增函数,得.综上所述,故选:D.【点睛】本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题8C【解析】由三视图还原原几何体,借助于正方体可得三棱锥的表面中直角三角形的个数.【详解】由三视图还原原几何体如图,其中,为直角三角形.该三棱锥的表面中直角三角形的个数为3.故选:C.【点睛】本小题主要考查由三视图还原为原图,属于基础题.9A【解析】由,两边平方后展开整理,即可求得,则的长可求【详解】解:,故选:【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查
11、了空间想象能力,考查了推理能力与计算能力,属于中档题10B【解析】作出不等式对应的平面区域,利用线性规划的知识,利用的几何意义即可得到结论【详解】不等式组作出可行域如图:,的几何意义是动点到的斜率,由图象可知的斜率为1,的斜率为:,则的取值范围是:,故选:【点睛】本题主要考查线性规划的应用,根据目标函数的几何意义结合斜率公式是解决本题的关键11D【解析】确定点为外心,代入化简得到,再根据计算得到答案.【详解】由可知,点为外心,则,又,所以因为,联立方程可得,因为,所以,即故选:【点睛】本题考查了向量模长的计算,意在考查学生的计算能力.12B【解析】试题分析:由题意得,所以,所求双曲线方程为考点
12、:双曲线方程.二、填空题:本题共4小题,每小题5分,共20分。13【解析】设直线l的方程为,联立直线l与抛物线C的方程,得到A,B点横坐标的关系式,代入到中,解出t的值,即可求得直线l的方程【详解】设直线由题设得,故,由题设可得由可得,则,从而,得,所以l的方程为,故答案为:【点睛】本题主要考查了直线的方程,抛物线的定义,抛物线的简单几何性质,直线与抛物线的位置关系,属于中档题.14【解析】首先把零点问题转化为方程问题,等价于有三个零点,两侧开方,可得,即有三个零点,再运用函数的单调性结合最值即可求出参数的取值范围.【详解】若函数有三个零点,即零点有,显然,则有,可得,即有三个零点,不妨令,对
13、于,函数单调递增,所以函数在区间上只有一解,对于函数,解得,解得,解得,所以函数在区间上单调递减,在区间上单调递增,当时,当时,此时函数若有两个零点,则有,综上可知,若函数有三个零点,则实数的取值范围是.故答案为:【点睛】本题考查了函数零点的零点,恰当的开方,转化为函数有零点问题,注意恰有三个零点条件的应用,根据函数的最值求解参数的范围,属于难题.15【解析】由题可得,因为向量与向量平行,所以,解得16【解析】根据题意得出,由此可得出实数的值.【详解】,直线的斜率为,由于函数在处的切线与直线平行,则.故答案为:.【点睛】本题考查利用函数的切线与直线平行求参数,解题时要结合两直线的位置关系得出两
14、直线斜率之间的关系,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17()详见解析;();()存在,点为线段的中点.【解析】()连结,则四边形为平行四边形,得到证明.()建立如图所示坐标系,平面法向量为,平面的法向量,计算夹角得到答案.()设,计算,根据垂直关系得到答案.【详解】()连结,则四边形为平行四边形.平面.()平面,四边形为正方形.所以,两两垂直,建立如图所示坐标系,则,设平面法向量为,则,连结,可得,又所以,平面,平面的法向量,设二面角的平面角为,则.()线段上存在点使得,设,所以点为线段的中点.【点睛】本题考查了线面平行,二面角,根据垂直
15、关系确定位置,意在考查学生的计算能力和空间想象能力.18(1)(2)见解析【解析】(1)因为数列的前项和满足:,所以当时,即解得或,因为数列都是正项,所以,因为,所以,解得或,因为数列都是正项,所以,当时,有,所以,解得,当时,符合所以数列的通项公式,;(2)因为,所以,所以数列的前项和为:,当时,有,所以,所以对于任意,数列的前项和.19(1)(2)2【解析】(1)转化条件得,进而可得,即可得解;(2)由化简可得,由结合三角函数的性质即可得解.【详解】(1),由正弦定理得,即,又 ,又 , 由可得.(2)由(1)可得,的最大值为2.【点睛】本题考查了平面向量平行、正弦定理以及三角恒等变换的应
16、用,考查了三角函数的性质,属于中档题.20(1)证明见解析;(2)证明见解析;【解析】(1)推导出,由是的中点,能证明是有中点(2)作于点,推导出平面,从而,由,能证明平面,由此能证明平面平面【详解】证明:(1)在三棱锥中,平面,平面平面,平面,在中,是的中点,是有中点(2)在三棱锥中,是锐角三角形,在中,可作于点,平面平面,平面平面,平面,平面,平面,平面,平面,平面平面【点睛】本题考查线段中点的证明,考查面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,属于中档题21(1)当时,没有极值点,当时,有一个极小值点.(2)【解析】试题分析 :
17、(1),分,讨论,当时,对,当时,解得,在上是减函数,在上是增函数。所以,当时,没有极值点,当时,有一个极小值点.(2)原命题为假命题,则逆否命题为真命题。即不等式在区间内有解。设 ,所以 ,设 ,则,且是增函数,所以 。所以分和k1讨论。试题解析:()因为,所以,当时,对,所以在是减函数,此时函数不存在极值,所以函数没有极值点;当时,令,解得,若,则,所以在上是减函数,若,则,所以在上是增函数,当时,取得极小值为,函数有且仅有一个极小值点,所以当时,没有极值点,当时,有一个极小值点.()命题“,”是假命题,则“,”是真命题,即不等式在区间内有解.若,则设 ,所以 ,设 ,则,且是增函数,所以 当时,所以在上是增函数,即,所以在上是增函数,所以,即在上恒成立.当时,因为在是增函数,因为, ,所以在上存在唯一零点,当时,在上单调递减,从而,即,所以在上单调递减,所以当时,即.所以不等式在区间内有解综上所述,实数的取值范围为.22(1);(2)见解析【解析】(1)由条件可得,再根据离心率可求得,则可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 完整多媒体应用设计师考试资料试题及答案
- 2020国企工作报告
- 心里年龄测试题及答案
- 软件测试风险评估方法试题及答案
- 初级社会工作者考试知识共享试题及答案
- 互动学习社工考试试题及答案
- 拌合站运输管理制度
- 水泥厂电气设备管理制度
- 红黄蓝项目管理制度
- 果树培养室管理制度
- GB/T 16604-2017涤纶工业长丝
- 2023年上海市闵行区财政局系统事业单位招聘笔试题库及答案解析
- 小学英语过程性评价方案
- 2022年淮南市人民医院医护人员招聘笔试试题及答案解析
- 法定代表人、执行董事董事长、董事、监事、经理的任职文件
- 铁路工程地质勘查阶段监理工作总结
- 密码模块安全检测要求
- 吊篮保养记录月检
- (中职中专)发动机构造与维修完整版课件汇总全书电子教案(最新)
- 食堂安全管理、操作培训考试题与答案
- 工序单位能耗地计算方法、及企业吨钢可比能耗计算方法
评论
0/150
提交评论