福建省南安2021-2022学年高考冲刺押题(最后一卷)数学试卷含解析_第1页
福建省南安2021-2022学年高考冲刺押题(最后一卷)数学试卷含解析_第2页
福建省南安2021-2022学年高考冲刺押题(最后一卷)数学试卷含解析_第3页
福建省南安2021-2022学年高考冲刺押题(最后一卷)数学试卷含解析_第4页
福建省南安2021-2022学年高考冲刺押题(最后一卷)数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1二项式的展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )A180B90C45D3602若等差数列的前项和为,且,则的值为( )A21B63C13D843设,满足,则的取值范围是( )ABCD4的展开式中,满足的的系数之和为

2、( )ABCD5点为棱长是2的正方体的内切球球面上的动点,点为的中点,若满足,则动点的轨迹的长度为( )ABCD6泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述:甲:我走红门盘道徒步线路,乙走桃花峪登山线路;乙:甲走桃花峪登山线路,丙走红门盘道徒步线路;丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是( )A甲走桃花峪登山

3、线路B乙走红门盘道徒步线路C丙走桃花峪登山线路D甲走天烛峰登山线路7若满足约束条件则的最大值为( )A10B8C5D38设全集,集合,则( )ABCD9已知复数,则的虚部是( )ABCD110已知数列的通项公式是,则( )A0B55C66D7811在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是( )ABCD12展开项中的常数项为A1B11C-19D51二、填空题:本题共4小题,每小题5分,共20分。13某学习小组有名男生和名女生.若从中随机选出名同学代表该小组参加知识竞赛,则选出的名同学中恰好名男生名女生的概率为_14在平面直角坐标系xOy中,已知A0,a,B3,a+4,若

4、圆x2+y2=9上有且仅有四个不同的点C,使得ABC的面积为5,则实数a的取值范围是_.15在直三棱柱内有一个与其各面都相切的球O1,同时在三棱柱外有一个外接球.若,,,则球的表面积为_.16设、分别为椭圆:的左、右两个焦点,过作斜率为1的直线,交于、两点,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知集合,集合.(1)求集合;(2)若,求实数的取值范围.18(12分)已知各项均为正数的数列的前项和为,满足,恰为等比数列的前3项(1)求数列,的通项公式;(2)求数列的前项和为;若对均满足,求整数的最大值;(3)是否存在数列满足等式成立,若存在,求出数列的通

5、项公式;若不存在,请说明理由19(12分)数列满足,是与的等差中项.(1)证明:数列为等比数列,并求数列的通项公式;(2)求数列的前项和.20(12分)有最大值,且最大值大于.(1)求的取值范围;(2)当时,有两个零点,证明:.(参考数据:)21(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若直线与曲线交于、两点,求的面积.22(10分)已知函数,(其中,).(1)求函数的最小值.(2)若,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给

6、出的四个选项中,只有一项是符合题目要求的。1A【解析】试题分析:因为的展开式中只有第六项的二项式系数最大,所以,令,则,.考点:1.二项式定理;2.组合数的计算.2B【解析】由已知结合等差数列的通项公式及求和公式可求,然后结合等差数列的求和公式即可求解【详解】解:因为,所以,解可得,则故选:B【点睛】本题主要考查等差数列的通项公式及求和公式的简单应用,属于基础题3C【解析】首先绘制出可行域,再绘制出目标函数,根据可行域范围求出目标函数中的取值范围.【详解】由题知,满足,可行域如下图所示,可知目标函数在点处取得最小值,故目标函数的最小值为,故的取值范围是.故选:D.【点睛】本题主要考查了线性规划

7、中目标函数的取值范围的问题,属于基础题.4B【解析】,有,三种情形,用中的系数乘以中的系数,然后相加可得【详解】当时,的展开式中的系数为当,时,系数为;当,时,系数为;当,时,系数为;故满足的的系数之和为故选:B【点睛】本题考查二项式定理,掌握二项式定理和多项式乘法是解题关键5C【解析】设的中点为,利用正方形和正方体的性质,结合线面垂直的判定定理可以证明出平面,这样可以确定动点的轨迹,最后求出动点的轨迹的长度.【详解】设的中点为,连接,因此有,而,而平面,因此有平面,所以动点的轨迹平面与正方体的内切球的交线. 正方体的棱长为2,所以内切球的半径为,建立如下图所示的以为坐标原点的空间直角坐标系:

8、因此有,设平面的法向量为,所以有,因此到平面的距离为:,所以截面圆的半径为:,因此动点的轨迹的长度为.故选:C【点睛】本题考查了线面垂直的判定定理的应用,考查了立体几何中轨迹问题,考查了球截面的性质,考查了空间想象能力和数学运算能力.6D【解析】甲乙丙三人陈述中都提到了甲的路线,由题意知这三句中一定有一个是正确另外两个错误的,再分情况讨论即可.【详解】若甲走的红门盘道徒步线路,则乙,丙描述中的甲的去向均错误,又三人的陈述都只对一半,则乙丙的另外两句话“丙走红门盘道徒步线路”,“乙走红门盘道徒步线路”正确,与“三人走的线路均不同”矛盾.故甲的另一句“乙走桃花峪登山线路”正确,故丙的“乙走红门盘道

9、徒步线路”错误,“甲走天烛峰登山线路”正确.乙的话中“甲走桃花峪登山线路”错误,“丙走红门盘道徒步线路”正确.综上所述,甲走天烛峰登山线路,乙走桃花峪登山线路, 丙走红门盘道徒步线路故选:D【点睛】本题主要考查了判断与推理的问题,重点是找到三人中都提到的内容进行分类讨论,属于基础题型.7D【解析】画出可行域,将化为,通过平移即可判断出最优解,代入到目标函数,即可求出最值.【详解】解:由约束条件作出可行域如图,化目标函数为直线方程的斜截式,.由图可知当直线过时,直线在轴上的截距最大,有最大值为3.故选:D.【点睛】本题考查了线性规划问题.一般第一步画出可行域,然后将目标函数转化为 的形式,在可行

10、域内通过平移找到最优解,将最优解带回到目标函数即可求出最值.注意画可行域时,边界线的虚实问题.8D【解析】求解不等式,得到集合A,B,利用交集、补集运算即得解【详解】由于 故集合或 故集合 故选:D【点睛】本题考查了集合的交集和补集混合运算,考查了学生概念理解,数学运算的能力,属于中档题.9C【解析】化简复数,分子分母同时乘以,进而求得复数,再求出,由此得到虚部.【详解】,所以的虚部为.故选:C【点睛】本小题主要考查复数的乘法、除法运算,考查共轭复数的虚部,属于基础题.10D【解析】先分为奇数和偶数两种情况计算出的值,可进一步得到数列的通项公式,然后代入转化计算,再根据等差数列求和公式计算出结

11、果.【详解】解:由题意得,当为奇数时,当为偶数时, 所以当为奇数时,;当为偶数时,所以 故选:D【点睛】此题考查数列与三角函数的综合问题,以及数列求和,考查了正弦函数的性质应用,等差数列的求和公式,属于中档题.11B【解析】由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,可得,化为,即,的取值范围,故选B.【点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属

12、于综合题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.12B【解析】展开式中的每一项是由每个括号中各出一项组成的,所以可分成三种情况.【详解】展开式中的项为常数项,有3种情况:(1)5个括号都出1,即;(2)两个括号出,两个括号出,一个括号出1,即;(3)一个括号出,一个括号出,三个括号出1,即;所以展开项中的常数项为,故选B.【点睛】本题考查二项式定理知识的生

13、成过程,考查定理的本质,即展开式中每一项是由每个括号各出一项相乘组合而成的.二、填空题:本题共4小题,每小题5分,共20分。13【解析】从7人中选出2人则总数有,符合条件数有,后者除以前者即得结果【详解】从7人中随机选出2人的总数有,则记选出的名同学中恰好名男生名女生的概率为事件,故答案为:【点睛】组合数与概率的基本运用,熟悉组合数公式14(-53,53)【解析】求出AB的长度,直线方程,结合ABC的面积为5,转化为圆心到直线的距离进行求解即可【详解】解:AB的斜率k=a+4-a3-0=43,|AB|=(3-0)2+(a+4-a)2=32+42=5,设ABC的高为h,则ABC的面积为5,S=1

14、2|AB|h=125h5,即h2,直线AB的方程为ya=43x,即4x3y+3a0若圆x2+y29上有且仅有四个不同的点C,则圆心O到直线4x3y+3a0的距离d=|3a|42+(-3)2=|3a|5,则应该满足dRh321,即|3a|51,得|3a|5得-53a53,故答案为:(-53,53)【点睛】本题主要考查直线与圆的位置关系的应用,求出直线方程和AB的长度,转化为圆心到直线的距离是解决本题的关键15【解析】先求出球O1的半径,再求出球的半径,即得球的表面积.【详解】解:,,,, 设球O1的半径为,由题得,所以棱柱的侧棱为.由题得棱柱外接球的直径为,所以外接球的半径为,所以球的表面积为.

15、故答案为:【点睛】本题主要考查几何体的内切球和外接球问题,考查球的表面积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.16【解析】由椭圆的标准方程,求出焦点的坐标,写出直线方程,与椭圆方程联立,求出弦长,利用定义可得,进而求出。【详解】由知,焦点,所以直线:,代入得,即,设, ,故 由定义有,所以。【点睛】本题主要考查椭圆的定义、椭圆的简单几何性质、以及直线与椭圆位置关系中弦长的求法,注意直线过焦点,位置特殊,采取合适的弦长公式,简化运算。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2).【解析】(1)求出函数的定义域,即可求出结论;(2)化简集合,

16、根据确定集合的端点位置,建立的不等量关系,即可求解.【详解】(1)由,即得或,所以集合或.(2)集合,由得或,解得或,所以实数的取值范围为.【点睛】本题考查集合的运算,集合间的关系求参数,考查函数的定义域,属于基础题.18(2),(2),的最大整数是2(3)存在,【解析】(2)由可得(),然后把这两个等式相减,化简得,公差为2,因为,为等比数列,所以,化简计算得,从而得到数列的通项公式,再计算出 ,从而可求出数列的通项公式;(2)令,化简计算得,从而可得数列是递增的,所以只要的最小值大于即可,而的最小值为,所以可得答案;(3)由题意可知,即,这个可看成一个数列的前项和,再写出其前()项和,两式

17、相减得,利用同样的方法可得.【详解】解:(2)由题,当时,即当时, -得,整理得,又因为各项均为正数的数列故是从第二项的等差数列,公差为2又恰为等比数列的前3项,故,解得又,故,因为也成立故是以为首项,2为公差的等差数列故即2,4,8恰为等比数列的前3项,故是以为首项,公比为的等比数列,故综上,(2)令,则 所以数列是递增的,若对均满足,只要的最小值大于即可因为的最小值为,所以,所以的最大整数是2(3)由,得, -得, , -得,所以存在这样的数列,【点睛】此题考查了等差数列与等比数列的通项公式与求和公式,最值,恒成立问题,考查了推理能力与计算能力,属于中档题.19(1)见解析,(2)【解析】

18、(1)根据等差中项的定义得,然后构造新等比数列,写出的通项即可求(2)根据(1)的结果,分组求和即可【详解】解:(1)由已知可得,即,可化为,故数列是以为首项,2为公比的等比数列.即有,所以.(2)由(1)知,数列的通项为:,故.【点睛】考查等差中项的定义和分组求和的方法;中档题.20(1);(2)证明见解析.【解析】(1)求出函数的定义域为,分和两种情况讨论,分析函数的单调性,求出函数的最大值,即可得出关于实数的不等式,进而可求得实数的取值范围;(2)利用导数分析出函数在上递增,在上递减,可得出,由,构造函数,证明出,进而得出,再由函数在区间上的单调性可证得结论.【详解】(1)函数的定义域为,且.当时,对任意的,此时函数在上为增函数,函数为最大值;当时,令,得.当时,此时函数单调递增;当时,此时函数单调递减.所以,函数在处取得极大值,亦即最大值,即,解得.综上所述,实数的取值范围是;(2)当时,定义域为,当时,;当时,.所以,函数的单调递增区间为,单调递减区间为.由于函数有两个零点、且,构造函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论