版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、4.3指数函数与对数函数的关系指数函数、对数函数与幂函数 人教版高中数学B版必修二一二一、反函数的概念1.(1)已知一次函数y=2x-1,你能从方程的角度把x用y表示出来吗?一二2.填空.(1)反函数的定义一般地,如果在函数y=f(x)中,给定值域中任意一个y的值,只有唯一的x与之对应,那么x是y的函数,这个函数称为y=f(x)的反函数.(2)反函数的记法函数y=f(x)的反函数通常用y=f-1(x)表示.(3)互为反函数的性质y=f(x)的定义域与y=f-1(x)的值域相同.y=f(x)的值域与y=f-1(x)的定义域相同.y=f(x)与y=f-1(x)的图像关于直线y=x对称.一二一二二、
2、指数函数与对数函数的关系1.函数y=ax(a0,且a1)与函数y=logax(a0,且a1)的解析式有何内在联系?提示:根据对数式与指数式的互化可知y=ax可化为对数式“x=logay”,再将等式“x=logay”中的x,y互换,也就形成了对数函数y=logax,从这一内在联系可以看出y=ax与y=logax的定义域和值域是互换的.2.函数y=ax(a0,且a1)与函数y=logax(a0,且a1)的单调性有一致性吗?提示:当0a1时,上述两个函数均是其定义域上的增函数.因此单调性具有一致性,但变化速度有差异.一二3.填空.(1)关系指数函数y=ax(a0,a1)与对数函数y=logax(a0
3、,a1)互为反函数.(2)图像特征指数函数y=ax(a0,a1)与对数函数y=logax(a0,a1)的图像关于直线y=x对称.4.做一做:若函数y=log3x+1的反函数的定义域为(3,+),则此函数的定义域为.答案:(9,+)解析:函数y=log3x+1的反函数的定义域为(3,+),也即这个函数的值域为(3,+),所以log3x+13,即log3x2,所以x9.所以此函数的定义域为(9,+).探究一探究二探究三思维辨析求反函数例1求下列函数的反函数:分析:按照求反函数的基本步骤求解即可.解:(1)由y=log2x,得x=2y,当堂检测探究一探究二探究三思维辨析反思感悟求函数的反函数的主要步
4、骤:(1)从y=f(x)中解出x=(y);(2)x,y互换;(3)标明反函数的定义域(即原函数的值域),简记为“一解、二换、三写”.当堂检测探究一探究二探究三思维辨析变式训练1求函数y=2x+1(x0)的反函数.解:由y=2x+1,得2x=y-1,x=log2(y-1),y=log2(x-1).又x0,02x1,12x+12.所求函数的反函数为y=log2(x-1)(1x0,且a1,则函数y=ax与y=loga(-x)的图像只能是()(2)将y=2x的图像(),再作关于直线y=x对称的图像,可得到函数y=log2(x+1)的图像.A.先向上平行移动1个单位长度B.先向右平行移动1个单位长度C.
5、先向左平行移动1个单位长度D.先向下平行移动1个单位长度答案:(1)B(2)D 当堂检测探究一探究二探究三思维辨析解析:(1)方法一:首先,曲线y=ax只可能在上半平面,y=loga(-x)只可能在左半平面,从而排除A,C.其次,从单调性着眼.y=ax与y=loga(-x)的单调性正好相反,又可排除D.故选B.方法二:若0a1,则曲线y=ax上升且过点(0,1),而曲线y=loga(-x)下降且过点(-1,0),只有B满足条件.方法三:如果注意到y=loga(-x)的图像关于y轴的对称图像为y=logax,又y=logax与y=ax互为反函数(图像关于直线y=x对称),则可直接选B.(2)本题
6、是关于图像的平移变换和对称变换,可求出解析式或利用几何图形直观推断.当堂检测探究一探究二探究三思维辨析反思感悟互为反函数的图像特点:(1)互为反函数的图像关于直线y=x对称;图像关于直线y=x对称的两个函数互为反函数.(2)互为反函数的两个函数在相应区间上的单调性一致.(3)若一奇函数有反函数,则它的反函数也是奇函数.当堂检测探究一探究二探究三思维辨析答案:C 当堂检测探究一探究二探究三思维辨析指数函数与对数函数关系的综合应用例3设方程2x+x-3=0的根为a,方程log2x+x-3=0的根为b,求a+b的值.分析:根据方程的特点,难以从正面下手,可转变方程形式,用数形结合的方法求解.解:将方
7、程整理得2x=-x+3,log2x=-x+3.如图可知,a是指数函数y=2x的图像与直线y=-x+3交点A的横坐标,b是对数函数y=log2x的图像与直线y=-x+3交点B的横坐标.当堂检测探究一探究二探究三思维辨析由于函数y=2x与y=log2x互为反函数,所以它们的图像关于直线y=x对称,由题意可得出A,B两点也关于直线y=x对称,于是A,B两点的坐标为A(a,b),B(b,a).则A,B都在直线y=-x+3上,b=-a+3(A点坐标代入),或a=-b+3(B点坐标代入),故a+b=3.反思感悟方程解的个数问题的求解策略根据指数函数与对数函数图像的关系,利用数形结合、等价转化的思想可较为简
8、便地解决有关方程解的个数问题.当堂检测探究一探究二探究三思维辨析延伸探究 答案:4 当堂检测探究一探究二探究三思维辨析因对反函数定义理解:不清而致误典例 已知函数y=f(x+1)与函数y=g(x)的图像关于直线y=x对称,且g(x)的图像过定点(1,2 018),则y=f-1(x+1)的图像过定点.错解:g(x)的图像过定点(1,2 018),y=f(x+1)的图像过定点(2 018,1).y=f-1(x+1)的图像过定点(1,2 018).以上解答过程中都有哪些错误?出错的原因是什么?你如何订正?你怎么防范?提示:错解过程是误认为f(x+1)与f-1(x+1)互为反函数,实际上是f(x)与f
9、-1(x)互为反函数,对此不能对自变量x随意变化拓展.当堂检测探究一探究二探究三思维辨析正解:g(x)的图像过定点(1,2 018),f(x+1)的图像过定点(2 018,1).又f(x)的图像可以看作由f(x+1)的图像向右平移1个单位长度得到的,f(x)过定点(2 019,1).又f(x)与f-1(x)互为反函数,f-1(x)的图像过定点(1,2 019).再结合f-1(x)与f-1(x+1)的关系可知,f-1(x+1)的图像过定点(0,2 019).防范措施1.防止以上错误的产生,首先要明确反函数的求解原则和步骤,并且要清楚f(x)与f-1(x)是互为反函数的本质是等式中的x,y进行了互
10、换.2.对于复合函数f(x+1)的函数的求解,可将“x+1”看成整体来对待,即由y=f(x+1)可初步得x+1=f-1(y),即y=f-1(x)-1才是y=f(x+1)的反函数.当堂检测探究一探究二探究三思维辨析变式训练已知函数y=f(x-2)的图像过定点(2,6),则函数y=f-1(x-2)的图像过定点.答案:(8,0)当堂检测探究一探究二探究三思维辨析当堂检测答案:B2.函数y=x+2(xR)的反函数为()A.x=2-yB.x=y-2C.y=2-x(xR)D.y=x-2(xR)答案:D解析:由y=x+2(xR),得x=y-2(xR).互换x,y,得y=x-2(xR).探究一探究二探究三思维辨析当堂检测3.已知函数y=f(x)的反函数为y=f-1(x),如果函数y=f(x)的图像过点(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 车辆交接班考核制度
- 游泳池培训考核制度
- 内河船员考核制度
- 统计工作考核制度
- 高校新媒体考核制度
- 隐患定义及考核制度
- 严格绩效啊考核制度
- 机械各工序考核制度
- 2025至2030零售行业消费者信任构建策略及长期增长与资本介入可行性研究报告
- 2025-2030新西兰乳制品行业发展潜力分析商业市场开发投资评估增值策略
- 传染病的流行病学特点及防控措施
- 仲裁法课件教学课件
- 2025乍得矿产勘探行业现状调研与资源资本配置规划
- 旅游景区客流预测模型构建分析方案
- 漂流安全管理制度
- 文物建筑勘查设计取费标准(2020年版)
- 福建省中小学幼儿园教师职务申报表
- 有机电子材料与器件
- 物流行业转型与挑战试题及答案
- 绩效管理流程培训
- 施工现场实施信息化监控和数据处理方案
评论
0/150
提交评论