




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡
2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某地区高考改革,实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有()A8种B12种C16种D20种2函数在的图象大致为ABCD3设函数,则,的大致图象大致是的( )ABCD4已知平面向量,则实数x的值等于( )A6B1CD5周易是我国古代典籍,用“卦”描述了天地世间万象变化如图是一个八卦图,包含乾、坤、震、巽
3、、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻)若从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为( )ABCD6已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为( )ABCD7抛物线C:y2=2px的焦点F是双曲线C2:x2m-y21-m=10m1的右焦点,点P是曲线C1,C2的交点,点Q在抛物线的准线上,FPQ是以点P为直角顶点的等腰直角三角形,则双曲线C2的离心率为( )A2+1B22+3C210-3D210+38已知某口袋中有3个白球和个黑球(),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若
4、取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是若,则= ( )AB1CD29已知,则等于( )ABCD10点在曲线上,过作轴垂线,设与曲线交于点,且点的纵坐标始终为0,则称点为曲线上的“水平黄金点”,则曲线上的“水平黄金点”的个数为( )A0B1C2D311已知复数满足(是虚数单位),则=()ABCD12在边长为2的菱形中,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的外接球的表面积为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设集合,则_.14 “”是“”的_条件.(填写“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)15已知
5、平面向量、的夹角为,且,则的最大值是_16在中,角的对边分别为,且若为钝角,则的面积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)设,求函数的单调区间,并证明函数有唯一零点.(2)若函数在区间上不单调,证明:.18(12分)若正数满足,求的最小值.19(12分)()证明: ;()证明:();()证明:.20(12分)已知,函数有最小值7.(1)求的值;(2)设,求证:.21(12分)已知函数,.(1)若不等式的解集为,求的值.(2)若当时,求的取值范围.22(10分)已知椭圆与x轴负半轴交于,离心率.(1)求椭圆C的方程;(2)设直线与椭圆C交
6、于两点,连接AM,AN并延长交直线x=4于两点,若,直线MN是否恒过定点,如果是,请求出定点坐标,如果不是,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】分两类进行讨论:物理和历史只选一门;物理和历史都选,分别求出两种情况对应的组合数,即可求出结果.【详解】若一名学生只选物理和历史中的一门,则有种组合;若一名学生物理和历史都选,则有种组合;因此共有种组合.故选C【点睛】本题主要考查两个计数原理,熟记其计数原理的概念,即可求出结果,属于常考题型.2A【解析】因为,所以排除C、D当从负方向趋近于0时,可得.故选
7、A3B【解析】采用排除法:通过判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D和选项C即可求解.【详解】对于选项A:由题意知,函数的定义域为,其关于原点对称,因为,所以函数为奇函数,其图象关于原点对称,故选A排除;对于选项D:因为,故选项D排除;对于选项C:因为,故选项C排除;故选:B【点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.4A【解析】根据向量平行的坐标表示即可求解.【详解】,即,故选:A【点睛】本题主要考查了向量平行的坐标运算,属于容易题.5C【解
8、析】分类讨论,仅有一个阳爻的有坎、艮、震三卦,从中取两卦;从仅有两个阳爻的有巽、离、兑三卦中取一个,再取没有阳爻的坤卦,计算满足条件的种数,利用古典概型即得解.【详解】由图可知,仅有一个阳爻的有坎、艮、震三卦,从中取两卦满足条件,其种数是;仅有两个阳爻的有巽、离、兑三卦,没有阳爻的是坤卦,此时取两卦满足条件的种数是,于是所求的概率故选:C【点睛】本题考查了古典概型的应用,考查了学生综合分析,分类讨论,数学运算的能力,属于基础题.6C【解析】试题分析:设的交点为,连接,则为所成的角或其补角;设正四棱锥的棱长为,则,所以,故C为正确答案考点:异面直线所成的角7A【解析】先由题和抛物线的性质求得点P
9、的坐标和双曲线的半焦距c的值,再利用双曲线的定义可求得a的值,即可求得离心率.【详解】由题意知,抛物线焦点F1,0,准线与x轴交点F(-1,0),双曲线半焦距c=1,设点Q(-1,y) FPQ是以点P为直角顶点的等腰直角三角形,即PF=PQ,结合P点在抛物线上,所以PQ抛物线的准线,从而PFx轴,所以P1,2,2a=PF-PF=22-2 即a=2-1.故双曲线的离心率为e=12-1=2+1.故选A【点睛】本题考查了圆锥曲线综合,分析题目,画出图像,熟悉抛物线性质以及双曲线的定义是解题的关键,属于中档题.8B【解析】由题意或4,则,故选B9B【解析】由已知条件利用诱导公式得,再利用三角函数的平方
10、关系和象限角的符号,即可得到答案.【详解】由题意得 ,又,所以,结合解得,所以 ,故选B.【点睛】本题考查三角函数的诱导公式、同角三角函数的平方关系以及三角函数的符号与位置关系,属于基础题.10C【解析】设,则,则,即可得,设,利用导函数判断的零点的个数,即为所求.【详解】设,则,所以,依题意可得,设,则,当时,则单调递减;当时,则单调递增,所以,且,有两个不同的解,所以曲线上的“水平黄金点”的个数为2.故选:C【点睛】本题考查利用导函数处理零点问题,考查向量的坐标运算,考查零点存在性定理的应用.11A【解析】把已知等式变形,再由复数代数形式的乘除运算化简得答案【详解】解:由,得,故选【点睛】
11、本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题12D【解析】取AC中点N,由题意得即为二面角的平面角,过点B作于O,易得点O为的中心,则三棱锥的外接球球心在直线BO上,设球心为,半径为,列出方程即可得解.【详解】如图,由题意易知与均为正三角形,取AC中点N,连接BN,DN,则,即为二面角的平面角,过点B作于O,则平面ACD,由,可得,即点O为的中心,三棱锥的外接球球心在直线BO上,设球心为,半径为,,解得,三棱锥的外接球的表面积为.故选:D.【点睛】本题考查了立体图形外接球表面积的求解,考查了空间想象能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】先
12、解不等式,再求交集的定义求解即可.【详解】由题,因为,解得,即,则,故答案为:【点睛】本题考查集合的交集运算,考查解一元二次不等式.14充分不必要【解析】由余弦的二倍角公式可得,即或,即可判断命题的关系.【详解】由,所以或,所以“”是“”的充分不必要条件.故答案为:充分不必要【点睛】本题考查命题的充分条件与必要条件的判断,考查余弦的二倍角公式的应用.15【解析】建立平面直角坐标系,设,可得,进而可得出,由此将转化为以为自变量的三角函数,利用三角恒等变换思想以及正弦函数的有界性可得出结果.【详解】根据题意建立平面直角坐标系如图所示,设,以、为邻边作平行四边形,则,设,则,且,在中,由正弦定理,得
13、,即,在中,由正弦定理,得,即.,则,当时,取最大值.故答案为:.【点睛】本题考查了向量的数量积最值的计算,将问题转化为角的三角函数的最值问题是解答的关键,考查计算能力,属于难题16【解析】转化为,利用二倍角公式可求解得,结合余弦定理可得b,再利用面积公式可得解.【详解】因为,所以又因为,且为锐角,所以由余弦定理得,即,解得,所以故答案为:【点睛】本题考查了正弦定理和余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)为增区间;为减区间.见解析(2)见解析【解析】(1)先求得的定义域,然后利用导数
14、求得的单调区间,结合零点存在性定理判断出有唯一零点.(2)求得的导函数,结合在区间上不单调,证得,通过证明,证得成立.【详解】(1)函数的定义域为,由,解得为增区间;由解得为减区间.下面证明函数只有一个零点:,所以函数在区间内有零点,函数在区间上没有零点,故函数只有一个零点.(2)证明:函数,则当时,不符合题意;当时,令,则,所以在上单调增函数,而,又区间上不单调,所以存在,使得在上有一个零点,即,所以,且,即两边取自然对数,得即,要证,即证,先证明:,令,则在上单调递增,即,在中令,令,即即,.【点睛】本小题主要考查利用导数研究函数的单调区间和零点,考查利用导数证明不等式,考查分类讨论的数学
15、思想方法,考查化归与转化的数学思想方法,属于难题.18【解析】试题分析:由柯西不等式得,所以试题解析:因为均为正数,且,所以于是由均值不等式可知,当且仅当时,上式等号成立从而故的最小值为此时考点:柯西不等式19 ()见解析()见解析()见解析【解析】运用数学归纳法证明即可得到结果化简,运用累加法得出结果运用放缩法和累加法进行求证【详解】()数学归纳法证明时, 当时,成立; 当时,假设成立,则时所以时,成立综上可知,时, ()由得所以; ; 故,又所以 () 由累加法得: 所以故【点睛】本题考查了数列的综合,运用数学归纳法证明不等式的成立,结合已知条件进行化简求出化简后的结果,利用放缩法求出不等
16、式,然后两边同时取对数再进行证明,本题较为困难。20(1).(2)见解析【解析】(1)由绝对值三解不等式可得,所以当时,即可求出参数的值;(2)由,可得,再利用基本不等式求出的最小值,即可得证;【详解】解:(1),当时,解得.(2),当且仅当,即,时,等号成立.【点睛】本题主要考查绝对值三角不等式及基本不等式的简单应用,属于中档题21(1);(2)【解析】试题分析:(1)求得的解集,根据集合相等,列出方程组,即可求解的值;(2)当时,恒成立,当时,转化为,设,求得函数的最小值,即可求解的取值范围.试题解析:(1)由,得,因为不等式的解集为,所以,故不等式可化为,解得,所以,解得.(2)当时,恒成立,所以.当时,可化为,设,则,所以当时,所以.综上,的取值范围是.22(1)(2)直线恒过定点,详见解析【解析】(1)依题意由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师招聘之《小学教师招聘》题库练习备考题含答案详解(a卷)
- 押题宝典教师招聘之《幼儿教师招聘》考试题库附答案详解【突破训练】
- 2025内蒙古呼伦贝尔扎兰屯市综合类岗位“校园引才”37人笔试备考附答案详解(突破训练)
- 教师招聘之《小学教师招聘》考前冲刺试卷含答案详解【研优卷】
- 知识分享与在线教育社交平台创新创业项目商业计划书
- 2025年教师招聘之《幼儿教师招聘》押题练习试卷及答案详解【夺冠系列】
- 汽车海外市场推广创新创业项目商业计划书
- 票务系统应用创新创业项目商业计划书
- 2025年教师招聘之《小学教师招聘》题库必刷100题(考点精练)附答案详解
- 2025年教师招聘之《小学教师招聘》试卷及参考答案详解(培优)
- 煤仓作业规程
- 高大模板支撑体系安全检查验收表
- 测金属电阻率实验报告
- 政治经济学完整全套教学课件
- 养老护理员培训排泄照料
- 计算机应用基础(windows7-office2010)
- 融资方案报告范文模板
- 肾脏肿瘤影像学诊断策略
- 仓库定期检查表范例仓库管理工作检查项目与评分标准
- 化疗前的准备和评估
- 显微外科设备器械及显微外科基本技术培训教材培训课件
评论
0/150
提交评论