四川省绵阳巿三台2022年高考仿真卷数学试题含解析_第1页
四川省绵阳巿三台2022年高考仿真卷数学试题含解析_第2页
四川省绵阳巿三台2022年高考仿真卷数学试题含解析_第3页
四川省绵阳巿三台2022年高考仿真卷数学试题含解析_第4页
四川省绵阳巿三台2022年高考仿真卷数学试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知的部分图象如图所示,则的表达式是( )ABCD2已知分别为双曲线的左、右焦点,过的直线与双曲线的左、右两支分别交于两点,若,则双曲线的离心率为( )AB4C2D3已知函数,不等式

2、对恒成立,则的取值范围为( )ABCD4函数f(x)=2x-3+1x-3的定义域为()A32,3)(3,+) B(-,3)(3,+)C32,+) D(3,+)5已知向量,满足,在上投影为,则的最小值为( )ABCD6复数在复平面内对应的点为则( )ABCD7已知集合,则( )ABCD8某人用随机模拟的方法估计无理数的值,做法如下:首先在平面直角坐标系中,过点作轴的垂线与曲线相交于点,过作轴的垂线与轴相交于点(如图),然后向矩形内投入粒豆子,并统计出这些豆子在曲线上方的有粒,则无理数的估计值是( ) ABCD9近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某

3、大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;可以估计不足的大学生使用主要玩游戏;可以估计使用主要找人聊天的大学生超过总数的.其中正确的个数为( )ABCD10一个超级斐波那契数列是一列具有以下性质的正整数:从第三项起,每一项都等于前面所有项之和(例如:1,3,4,8,16).则首项为2,某一项为2020的超级斐波那契数列的个数为( )A3B4C5D611已知焦点为的抛物线的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为( )A或B或

4、C或D12设为虚数单位,为复数,若为实数,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13给出下列等式:,请从中归纳出第个等式:_.14在中,内角的对边长分别为,已知,且,则_15小李参加有关“学习强国”的答题活动,要从4道题中随机抽取2道作答,小李会其中的三道题,则抽到的2道题小李都会的概率为_.16已知向量=(1,2),=(-3,1),则=_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数,().(1)若曲线在点处的切线方程为,求实数a、m的值;(2)若对任意恒成立,求实数a的取值范围;(3)关于x的方程能否有三个不同的实根?证明你的结

5、论.18(12分)已知数列为公差不为零的等差数列,是数列的前项和,且、成等比数列,.设数列的前项和为,且满足.(1)求数列、的通项公式;(2)令,证明:.19(12分)已知的内角,的对边分别为,且.(1)求;(2)若的面积为,求的周长.20(12分)已知函数,.函数的导函数在上存在零点.求实数的取值范围;若存在实数,当时,函数在时取得最大值,求正实数的最大值;若直线与曲线和都相切,且在轴上的截距为,求实数的值.21(12分)已知函数.(1)当时.求函数在处的切线方程;定义其中,求;(2)当时,设,(为自然对数的底数),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.22(10分)

6、设数列,其前项和,又单调递增的等比数列, , .()求数列,的通项公式;()若 ,求数列的前n项和,并求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】由图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标代入函数的解析式,结合的取值范围求出的值,由此可得出函数的解析式.【详解】由图象可得,函数的最小正周期为,.将点代入函数的解析式得,得,则,因此,.故选:D.【点睛】本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.2A【解析】由已知得,由已知比值得,再利用双曲线的定

7、义可用表示出,用勾股定理得出的等式,从而得离心率【详解】.又,可令,则.设,得,即,解得,,由得,该双曲线的离心率.故选:A.【点睛】本题考查求双曲线的离心率,解题关键是由向量数量积为0得出垂直关系,利用双曲线的定义把双曲线上的点到焦点的距离都用表示出来,从而再由勾股定理建立的关系3C【解析】确定函数为奇函数,且单调递减,不等式转化为,利用双勾函数单调性求最值得到答案.【详解】是奇函数,易知均为减函数,故且在上单调递减,不等式,即,结合函数的单调性可得,即,设,故单调递减,故,当,即时取最大值,所以.故选:.【点睛】本题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.4A【解

8、析】根据幂函数的定义域与分母不为零列不等式组求解即可.【详解】因为函数y=2x-3+1x-3,2x-30 x-30,解得x32且x3;函数f(x)=2x-3+1x-3的定义域为32,33,+, 故选A【点睛】定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数fx的定义域为a,b,则函数fgx的定义域由不等式agxb求出.5B【解析】根据在上投影为,以及,可得;再对所求模长进行平方运算,可将问题转化为模长和夹角运算,代入即可求得.【详解】在上投影为,即 又 本题正确选项:

9、【点睛】本题考查向量模长的运算,对于含加减法运算的向量模长的求解,通常先求解模长的平方,再开平方求得结果;解题关键是需要通过夹角取值范围的分析,得到的最小值.6B【解析】求得复数,结合复数除法运算,求得的值.【详解】易知,则.故选:B【点睛】本小题主要考查复数及其坐标的对应,考查复数的除法运算,属于基础题.7C【解析】求出集合,计算出和,即可得出结论.【详解】,.故选:C.【点睛】本题考查交集和并集的计算,考查计算能力,属于基础题.8D【解析】利用定积分计算出矩形中位于曲线上方区域的面积,进而利用几何概型的概率公式得出关于的等式,解出的表达式即可.【详解】在函数的解析式中,令,可得,则点,直线

10、的方程为,矩形中位于曲线上方区域的面积为,矩形的面积为,由几何概型的概率公式得,所以,.故选:D.【点睛】本题考查利用随机模拟的思想估算的值,考查了几何概型概率公式的应用,同时也考查了利用定积分计算平面区域的面积,考查计算能力,属于中等题.9C【解析】根据利用主要听音乐的人数和使用主要看社区、新闻、资讯的人数作大小比较,可判断的正误;计算使用主要玩游戏的大学生所占的比例,可判断的正误;计算使用主要找人聊天的大学生所占的比例,可判断的正误.综合得出结论.【详解】使用主要听音乐的人数为,使用主要看社区、新闻、资讯的人数为,所以正确;使用主要玩游戏的人数为,而调查的总人数为,故超过的大学生使用主要玩

11、游戏,所以错误;使用主要找人聊天的大学生人数为,因为,所以正确.故选:C.【点睛】本题考查统计中相关命题真假的判断,计算出相应的频数与频率是关键,考查数据处理能力,属于基础题.10A【解析】根据定义,表示出数列的通项并等于2020.结合的正整数性质即可确定解的个数.【详解】由题意可知首项为2,设第二项为,则第三项为,第四项为,第五项为第n项为且,则,因为,当的值可以为;即有3个这种超级斐波那契数列,故选:A.【点睛】本题考查了数列新定义的应用,注意自变量的取值范围,对题意理解要准确,属于中档题.11A【解析】过作与准线垂直,垂足为,利用抛物线的定义可得,要使最大,则应最大,此时与抛物线相切,再

12、用判别式或导数计算即可.【详解】过作与准线垂直,垂足为,则当取得最大值时,最大,此时与抛物线相切,易知此时直线的斜率存在,设切线方程为,则.则,则直线的方程为.故选:A.【点睛】本题考查直线与抛物线的位置关系,涉及到抛物线的定义,考查学生转化与化归的思想,是一道中档题.12B【解析】可设,将化简,得到,由复数为实数,可得,解方程即可求解【详解】设,则.由题意有,所以.故选:B【点睛】本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13【解析】通过已知的三个等式,找出规律,归纳出第个等式即可【详解】解:因为:,等式的右边系数是2,

13、且角是等比数列,公比为,则角满足:第个等式中的角,所以;故答案为:【点睛】本题主要考查归纳推理,注意已知表达式的特征是解题的关键,属于中档题144【解析】根据正弦定理与余弦定理可得:,即故答案为415【解析】从四道题中随机抽取两道共6种情况,抽到的两道全都会的情况有3种,即可得到概率.【详解】由题:从从4道题中随机抽取2道作答,共有种,小李会其中的三道题,则抽到的2道题小李都会的情况共有种,所以其概率为.故答案为:【点睛】此题考查根据古典概型求概率,关键在于根据题意准确求出基本事件的总数和某一事件包含的基本事件个数.16-6【解析】由可求,然后根据向量数量积的坐标表示可求 .【详解】=(1,2

14、),=(-3,1),=(-4,-1),则 =1(-4)+2(-1)=-6故答案为-6【点睛】本题主要考查了向量数量积的坐标表示,属于基础试题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1),;(2);(3)不能,证明见解析【解析】(1)求出,结合导数的几何意义即可求解;(2)构造,则原题等价于对任意恒成立,即时,利用导数求最值即可,值得注意的是,可以通过代特殊值,由求出的范围,再研究该范围下单调性;(3)构造并进行求导,研究单调性,结合函数零点存在性定理证明即可.【详解】(1),曲线在点处的切线方程为,解得.(2)记,整理得,由题知,对任意恒成立,对任意恒成立,即时,解

15、得,当时,对任意,即在单调递增,此时,实数的取值范围为.(3)关于的方程不可能有三个不同的实根,以下给出证明:记,则关于的方程有三个不同的实根,等价于函数有三个零点,当时,记,则,在单调递增,即,在单调递增,至多有一个零点;当时,记,则,在单调递增,即在单调递增,至多有一个零点,则至多有两个单调区间,至多有两个零点.因此,不可能有三个零点.关于的方程不可能有三个不同的实根.【点睛】本题考查了导数几何意义的应用、利用导数研究函数单调性以及函数的零点存在性定理,考查了转化与化归的数学思想,属于难题.18(1),(2)证明见解析【解析】(1)利用首项和公差构成方程组,从而求解出的通项公式;由的通项公

16、式求解出的表达式,根据以及,求解出的通项公式;(2)利用错位相减法求解出的前项和,根据不等关系证明即可.【详解】(1)设首项为,公差为.由题意,得,解得,当时,.当时,满足上式.(2),令数列的前项和为.两式相减得恒成立,得证.【点睛】本题考查等差数列、等比数列的综合应用,难度一般.(1)当用求解的通项公式时,一定要注意验证是否成立;(2)当一个数列符合等差乘以等比的形式,优先考虑采用错位相减法进行求和,同时注意对于错位的理解.19(1);(2).【解析】(1)利用正弦定理将目标式边化角,结合倍角公式,即可整理化简求得结果;(2)由面积公式,可以求得,再利用余弦定理,即可求得,结合即可求得周长

17、.【详解】(1)由题设得.由正弦定理得,所以或.当,(舍)故,解得.(2),从而.由余弦定理得.解得.故三角形的周长为.【点睛】本题考查由余弦定理解三角形,涉及面积公式,正弦的倍角公式,应用正弦定理将边化角,属综合性基础题.20;4;12.【解析】由题意可知,求导函数,方程在区间上有实数解,求出实数的取值范围;由,则,分步讨论,并利用导函数在函数的单调性的研究,得出正实数的最大值;设直线与曲线的切点为,因为,所以切线斜率,切线方程为,设直线与曲线的切点为,因为,所以切线斜率,即切线方程为,整理得.所以,求得,设,则,所以在上单调递增,最后求出实数的值.【详解】由题意可知,则,即方程在区间上有实

18、数解,解得;因为,则,当,即时,恒成立,所以在上单调递增,不符题意;当时,令,解得:,当时,单调递增,所以不存在,使得在上的最大值为,不符题意;当时,解得:,且当时,当时,所以在上单调递减,在上单调递增,若,则在上单调递减,所以,若,则上单调递减,在上单调递增,由题意可知,即,整理得,因为存在,符合上式,所以,解得,综上,的最大值为4;设直线与曲线的切点为,因为,所以切线斜率,即切线方程整理得:由题意可知,即,即,解得所以切线方程为,设直线与曲线的切点为,因为,所以切线斜率,即切线方程为,整理得.所以,消去,整理得,且因为,解得,设,则,所以在上单调递增,因为,所以,所以,即.【点睛】本题主要考查导数在函数中的研究,导数的几何意义,属于难题.21(1);8079;(2).【解析】(1)时,利用导数的几何意义能求出函数在处的切线方程由,得,由此能求出的值(2)根据若对任意给定的,在区间,上总存在两个不同的,使得成立,得到函数在区间,上不单调,从而求得的取值范围【详解】(1),所以切线方程为.,. 令,则,. 因为, 所以, 由+得,所以. 所以.(2),当时,函数单调递增;当时,函数单调递减,所以,函数在上的值域为. 因为, ,故,此时,当 变化时、的变化情况如下:0+单调减最小值单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论