




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某三棱锥的三视图如图所示,则该三棱锥的体积为ABC2D2在直三棱柱中,己知,则异面直线与所成的角为( )ABCD3在中,角,的对边分别为,若,则( )AB3CD44若直线经过抛物线的焦
2、点,则( )ABC2D5若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ). A6500元B7000元C7500元D8000元6已知三点A(1,0),B(0, ),C(2,),则ABC外接圆的圆心到原点的距离为()ABCD7设,集合,则()ABCD8已知命题,那么为( )ABCD9若双曲线的一条渐近线与圆至多有一个交点,则双曲线的离心率的取值范围是( )ABCD10已知定点都在平面内,定点是内异于的动点,且,那么
3、动点在平面内的轨迹是( )A圆,但要去掉两个点B椭圆,但要去掉两个点C双曲线,但要去掉两个点D抛物线,但要去掉两个点11已知集合Mx|1x2,Nx|x(x+3)0,则MN( )A3,2)B(3,2)C(1,0D(1,0)12已知平面向量,则实数x的值等于( )A6B1CD二、填空题:本题共4小题,每小题5分,共20分。13已知一个圆锥的底面积和侧面积分别为和,则该圆锥的体积为_14将底面直径为4,高为的圆锥形石块打磨成一个圆柱,则该圆柱的侧面积的最大值为_.15已知关于的不等式对于任意恒成立,则实数的取值范围为_16根据如图所示的伪代码,若输出的的值为,则输入的的值为_.三、解答题:共70分。
4、解答应写出文字说明、证明过程或演算步骤。17(12分)改革开放年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各人,进行问卷测评,所得分数的频率分布直方图如图所示在分以上为交通安全意识强.求的值,并估计该城市驾驶员交通安全意识强的概率;已知交通安全意识强的样本中男女比例为,完成下列列联表,并判断有多大把握认为交通安全意识与性别有关;安全意识强安全意识不强合计男性女性合计用分层抽样的方式从得分在分以下的样本中抽取人,再从人中随机选取人对未来一年内的交
5、通违章情况进行跟踪调查,求至少有人得分低于分的概率.附:其中18(12分)如图,在四棱锥中,是等边三角形,.(1)若,求证:平面;(2)若,求二面角的正弦值19(12分)在三棱柱中,四边形是菱形,点M、N分别是、的中点,且.(1)求证:平面平面;(2)求四棱锥的体积.20(12分)在ABC中,角A,B,C所对的边分别为a,b,c,且满足bcosAasinB1(1)求A;(2)已知a2,B,求ABC的面积21(12分)设函数.(1)当时,求不等式的解集;(2)若对恒成立,求的取值范围.22(10分)如图,在平面直角坐标系中,椭圆的离心率为,且过点.求椭圆的方程;已知是椭圆的内接三角形,若点为椭圆
6、的上顶点,原点为的垂心,求线段的长;若原点为的重心,求原点到直线距离的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】 由给定的三视图可知,该几何体表示一个底面为一个直角三角形,且两直角边分别为和,所以底面面积为 高为的三棱锥,所以三棱锥的体积为,故选A2C【解析】由条件可看出,则为异面直线与所成的角,可证得三角形中,解得从而得出异面直线与所成的角【详解】连接,如图:又,则为异面直线与所成的角.因为且三棱柱为直三棱柱,面,又,解得.故选C【点睛】考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法
7、,考查了逻辑推理能力,属于基础题3B【解析】由正弦定理及条件可得,即.,由余弦定理得。.选B。4B【解析】计算抛物线的交点为,代入计算得到答案.【详解】可化为,焦点坐标为,故.故选:.【点睛】本题考查了抛物线的焦点,属于简单题.5D【解析】设目前该教师的退休金为x元,利用条形图和折线图列出方程,求出结果即可【详解】设目前该教师的退休金为x元,则由题意得:600015%x10%1解得x2故选D【点睛】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题6B【解析】选B.考点:圆心坐标7B【解析】先化简集合A,再求.【详解】由 得: ,所以 ,因此 ,故答案为B【点睛】本题主要考查集合的化简
8、和运算,意在考查学生对这些知识的掌握水平和计算推理能力.8B【解析】利用特称命题的否定分析解答得解.【详解】已知命题,那么是.故选:【点睛】本题主要考查特称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.9C【解析】求得双曲线的渐近线方程,可得圆心到渐近线的距离,由点到直线的距离公式可得的范围,再由离心率公式计算即可得到所求范围【详解】双曲线的一条渐近线为,即,由题意知,直线与圆相切或相离,则,解得,因此,双曲线的离心率.故选:C.【点睛】本题考查双曲线的离心率的范围,注意运用圆心到渐近线的距离不小于半径,考查化简整理的运算能力,属于中档题10A【解析】根据题意可得,即知C在以AB
9、为直径的圆上.【详解】,,,又,,平面,又平面,故在以为直径的圆上,又是内异于的动点,所以的轨迹是圆,但要去掉两个点A,B故选:A【点睛】本题主要考查了线面垂直、线线垂直的判定,圆的性质,轨迹问题,属于中档题.11C【解析】先化简Nx|x(x+3)0=x|-3x0,再根据Mx|1x2,求两集合的交集.【详解】因为Nx|x(x+3)0=x|-3x0,又因为Mx|1x2,所以MNx|1x0.故选:C【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.12A【解析】根据向量平行的坐标表示即可求解.【详解】,即,故选:A【点睛】本题主要考查了向量平行的坐标运算,属于容易题.二、填空
10、题:本题共4小题,每小题5分,共20分。13【解析】依据圆锥的底面积和侧面积公式,求出底面半径和母线长,再根据勾股定理求出圆锥的高,最后利用圆锥的体积公式求出体积。【详解】设圆锥的底面半径为,母线长为,高为,所以有 解得, 故该圆锥的体积为。【点睛】本题主要考查圆锥的底面积、侧面积和体积公式的应用。14【解析】由题意欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,将侧面积表示成关于的函数,再利用一元二次函数的性质求最值.【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,所以.,当时,的最大值为.故答案为:.【点睛】本题考查圆柱的侧面积的
11、最值,考查函数与方程思想、转化与化归思想、,考查空间想象能力和运算求解能力,求解时注意将问题转化为函数的最值问题.15【解析】先将不等式对于任意恒成立,转化为任意恒成立,设,求出在内的最小值,即可求出的取值范围.【详解】解:由题可知,不等式对于任意恒成立,即,又因为,对任意恒成立,设,其中,由不等式,可得:,则,当时等号成立,又因为在内有解,则,即:,所以实数的取值范围:.故答案为:.【点睛】本题考查不等式恒成立问题,利用分离参数法和构造函数,通过求新函数的最值求出参数范围,考查转化思想和计算能力.16【解析】算法的功能是求的值,根据输出的值,分别求出当时和当时的值即可得解【详解】解:由程序语
12、句知:算法的功能是求的值,当时,可得:,或(舍去);当时,可得:(舍去)综上的值为:故答案为:【点睛】本题考查了选择结构的程序语句,根据语句判断算法的功能是解题的关键,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17,概率为;列联表详见解析,有的把握认为交通安全意识与性别有关;.【解析】根据频率和为列方程求得的值,计算得分在分以上的频率即可;根据题意填写列联表,计算的值,对照临界值得出结论;用分层抽样法求得抽取各分数段人数,用列举法求出基本事件数,计算所求的概率值.【详解】解: 解得. 所以,该城市驾驶员交通安全意识强的概率 根据题意可知,安全意识强的人数有,其中男
13、性为人,女性为人,填写列联表如下:安全意识强安全意识不强合计男性女性合计 所以有的把握认为交通安全意识与性别有关. 由题意可知分数在,的分别为名和名, 所以分层抽取的人数分别为名和名, 设的为,的为,则基本事件空间为,共种, 设至少有人得分低于分的事件为,则事件包含的基本事件有,共种所以.【点睛】本题考查独立性检验应用问题,也考查了列举法求古典概型的概率问题,属于中档题.18(1)详见解析(2)【解析】(1)如图,作,交于,连接.因为,所以是的三等分点,可得.因为,所以,因为,所以,因为,所以,所以, 因为,所以,所以,因为平面,平面,所以平面.又,平面,平面,所以平面.因为,、平面,所以平面
14、平面,所以平面.(2)因为是等边三角形,所以.又因为,所以,所以.又,平面,所以平面.因为平面,所以平面平面.在平面内作平面.以B点为坐标原点,分别以所在直线为轴,建立如图所示的空间直角坐标系,则,所以,.设为平面的法向量,则,即,令,可得.设为平面的法向量,则,即,令,可得.所以,则,所以二面角的正弦值为.19(1)证明见解析;(2).【解析】(1)要证面面垂直需要先证明线面垂直,即证明出平面即可;(2)求出点A到平面的距离,然后根据棱锥的体积公式即可求出四棱锥的体积.【详解】(1)连接,由是平行四边形及N是的中点,得N也是的中点,因为点M是的中点,所以,因为,所以,又,所以平面,又平面,所
15、以平面平面;(2)过A作交于点O,因为平面平面,平面平面,所以平面,由是菱形及,得为三角形,则,由平面,得,从而侧面为矩形,所以.【点睛】本题主要考查了面面垂直的证明,求四棱锥的体积,属于一般题.20(1) ; (2).【解析】(1)由正弦定理化简已知等式可得sinBcosAsinAsinB1,结合sinB1,可求tanA,结合范围A(1,),可得A的值;(2)由已知可求C,可求b的值,根据三角形的面积公式即可计算得解【详解】(1)bcosAasinB1由正弦定理可得:sinBcosAsinAsinB1,sinB1,cosAsinA,tanA,A(1,),A;(2)a2,B,A,C,根据正弦定
16、理得到 b6,SABCab6【点睛】本题主要考查了正弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题21(1)或;(2)或.【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解集,最后求并集(2)根据绝对值三角不等式得最小值,再解含绝对值不等式可得的取值范围.试题解析:(1)等价于或或,解得:或.故不等式的解集为或.(2)因为:所以,由题意得:,解得或.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向22;.【解析】根据题意列出方程组求解即可;由原点为的垂心可得,轴,设,则,根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 没有付出就没有回报(12篇)
- 六年级毕业典礼活动主题方案(模板稿)
- 安全知识培训主持词课件
- 我的老师中考满分作文600字(9篇)
- 关于防溺水安全教育的策划方案模板
- 公司内部培训课程设计及学习效果评估表
- 销售技巧阅读课
- 医患关系调研方向
- (正式版)DB15∕T 2668-2022 《苜蓿草颗粒质量卫生检验与分级》
- 现代医护关系案例
- 食品安全 课件 高中主题班会
- YS/T 830-2012正丁基锂
- GB/T 31341-2014节能评估技术导则
- GB/T 29114-2012燃气轮机液体燃料
- GB/T 24218.3-2010纺织品非织造布试验方法第3部分:断裂强力和断裂伸长率的测定(条样法)
- GB/T 12470-2018埋弧焊用热强钢实心焊丝、药芯焊丝和焊丝-焊剂组合分类要求
- GB/T 10799-2008硬质泡沫塑料开孔和闭孔体积百分率的测定
- GA/T 1193-2014人身损害误工期、护理期、营养期评定规范
- FCI测试试题附答案
- 博微配电网工程设计软件
- 教育科研:教师职业成长的阶梯课件
评论
0/150
提交评论