版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、七年级数学下册第7章一元一次不等式与不等式组章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若ab0,cd0,则下列式子不一定成立的是()AacbdBCacbcDacbd2、若整数a使得关于x的方
2、程的解为非负数,且使得关于y的一元一次不等式组至少有3个整数解则所有符合条件的整数a的和为( )A23B25C27D283、若成立,则下列不等式不成立的是( )ABCD4、如果关于x的方程ax3(x+1)1x有整数解,且关于y的不等式组有解,那么符合条件的所有整数a的个数为()A3B4C5D65、若不等式3x1,两边同时除以3,得()AxBxCxDx6、把不等式的解集在数轴上表示正确的是( )ABCD7、(a)和b在数轴上表示的点如图所示,则下列判断正确的是( )Aa1Bba0Ca10Dab08、一个不等式的解集为x1,那么在数轴上表示正确的是()ABCD9、如果,那么下列结论中正确的是( )
3、ABCD10、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为()A24人B23人C22人D不能确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式的3x62+x非负整数解共有 _2、已知ab,且c0,用“”或“”填空(1)2a_a+b (2)_(3)c-a_c-b (4)-a|c|_-b|c|3、节日将至,某水果店打算将红心猕猴桃、奉节脐橙、阿克苏糖心苹果以鲜果礼盒的方式进行销售其中一个红心猕猴桃与一个阿克苏糖心苹果成本价之和为一个奉节脐橙的成本价
4、的两倍,一个阿克苏糖心苹果与一个红心猕猴桃成本价之差的两倍等于一个奉节脐橙的成本价商家打算将甲种鲜果礼盒装红心猕猴桃6个、奉节脐橙4个、阿克苏糖心苹果6个;乙种鲜果礼盒装红心猕猴桃8个、奉节脐橙4个、阿克苏糖心苹果6个;丙种鲜果礼盒装红心猕猴桃4个、奉节脐橙8个、阿克苏糖心苹果8个已知每个鲜果礼盘的成本价定为各水果成本价之和,每个甲种鲜果礼盒在成本价的基础上提高之后进行销售,每个乙种鲜果礼盒的利润等于两个阿克苏糖心苹果的成本价,每个丙种鲜果礼盒的利润率和每个乙种鲜果礼盒时利润率相等某单位元旦节发福利,准备给每个员工发一个鲜果礼盒采购员向该水果店预订了80个甲种鲜果礼盒,预订乙种鲜果礼盒的数量与
5、丙种鲜果礼盒的数量之差位于12和28之间该水果店通过核算,此次订单的利润率为,则该单位一共有_名员工4、若xy,试比较大小:3x+5 _3y+5(填“”、“;(2);(3);(4)【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键3、140【分析】设一个红心猕猴桃的成本价为x元,一个奉节脐橙的成本价为z元,一个阿克苏糖心苹果的成本价为y元,然后由题意易得,则有甲种鲜果礼盒的成本价为元,乙种鲜果礼盒的成本价为元,丙种鲜果礼盒的成本价为元,进而可得甲的利润为元,乙的利润为元,利润率为,丙的利润为元,设预定乙种鲜果礼盒的数量为m,丙种鲜果礼盒的数量为n,则根据“订单的利润
6、率为”列出方程,最后根据“预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间”来求解即可【详解】解:设一个红心猕猴桃的成本价为x元,一个奉节脐橙的成本价为z元,一个阿克苏糖心苹果的成本价为y元,由题意得:,解得:,甲种鲜果礼盒的成本价为元,乙种鲜果礼盒的成本价为元,丙种鲜果礼盒的成本价为元,甲的利润为元,乙的利润为元,则有它的利润率为,进而可得丙的利润为元,设预定乙种鲜果礼盒的数量为m,丙种鲜果礼盒的数量为n,由题意得:,化简得:,预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间,即,解得:,m为正整数,m的值可能为36、37、38、39、40、41、42、43、
7、44,n为正整数,是6的倍数,该单位一共有80+40+20=140(名);故答案为140【点睛】本题主要考查三元一次方程组的应用及一元一次不等式的应用,熟练掌握利用消元思想及不定方程的求解方法是解题的关键4、y,3x3y,3x+53y+5故答案为:【点睛】本题考查了不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变5、【分析】先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可【详解】解:由得:由得:不等式
8、组无解故答案为【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找三、解答题1、(1)y;(2)x,数轴见解析【分析】(1)根据一元一次不等式的性质,先去括号,再移项并合并同类项,通过计算即可得到答案;(2)根据一元一次不等式的性质,先去分母,再去括号,最后移项并合并同类项,结合数轴的性质作图,即可得到答案【详解】(1)去括号,得:6y312y6,移项,得:6y+2y16+3,合并同类项,得:8y2,系数化成1得:y;(2)去分母,得:2(2x1)3(2x+1)+6,去括号,得:4x+26x3+6,移项,得:4x+6x3+
9、62,合并同类项,得:2x1,系数化为1得:x数轴表示如下:【点睛】本题考查了数轴、一元一次不等式的知识;解题的关键是熟练掌握一元一次不等式的性质,从而完成求解2、(1)x-3,数轴表示见解析(2)x-3,数轴表示见解析【分析】(1)按照去分母、移项、合并同类项、系数化为1的步骤求出不等式的解集,然后画出数轴,并在数轴上表示出不等式的解集;(2)按照移项、合并同类项、系数化为1的步骤求出不等式的解集,然后画出数轴,并在数轴上表示出不等式的解集(1)解:x+1,去分母,得2x3x+3移项,得2x-3x3合并同类项,得-x-3,解集在数轴上表示为:(2)解:x-13x+5,移项,得x-3x5+1,
10、合并同类项,得-2x6,系数化为1,得x-3,解集在数轴上表示为:【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键 按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可3、1,2,3,4,5【分析】先求出不等式的解集,再求出不等式的正整数解即可【详解】解:移项得:-11x4-64,合并同类项得:-11x-60,不等式的解集为x,正整数解为1,2,3,4,5【点睛】本题考查了解一元一次不等式和不等式的整数解,能求出不等式的解集是解此题的关键4、a0【分析】先解方程得出x,根据方程的解大于1得出关于a的不等式,解之即可【详解】解:解不等式6xa42x2a,得x,根据题意,得:1,解得a0【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变5、(2)、(3)是一元一次不等式【分析】一元一次不等式的定义主要由三部分组成:不等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 长期照护师操作技能能力考核试卷含答案
- 水解酵母分离工安全检查模拟考核试卷含答案
- 巷修工QC管理水平考核试卷含答案
- 兽用化学药品制剂工安全风险能力考核试卷含答案
- 锂盐田工操作水平测试考核试卷含答案
- 桥梁架设培训课件
- 桥梁养护管理培训
- 酒店员工薪酬激励与员工满意度制度
- 酒店前厅接待与客户关系管理制度
- 车站客运服务流程制度
- 固体废物 铅和镉的测定 石墨炉原子吸收分光光度法(HJ 787-2016)
- DB45-T 2675-2023 木薯米粉加工技术规程
- 板材眼镜生产工艺
- 物资仓储在库作业管理-货物堆码与苫垫
- Unit 3 My weekend plan B Let's talk(教案)人教PEP版英语六年级上册
- 实习考勤表(完整版)
- 名师工作室成员申报表
- DB63T 2129-2023 盐湖资源开发标准体系
- 中药学电子版教材
- 第五版-FMEA-新版FMEA【第五版】
- 美术形式设计基础与应用教学燕课件
评论
0/150
提交评论