2021-2022学年贵州省兴仁中考押题数学预测卷含解析及点睛_第1页
2021-2022学年贵州省兴仁中考押题数学预测卷含解析及点睛_第2页
2021-2022学年贵州省兴仁中考押题数学预测卷含解析及点睛_第3页
2021-2022学年贵州省兴仁中考押题数学预测卷含解析及点睛_第4页
2021-2022学年贵州省兴仁中考押题数学预测卷含解析及点睛_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡

2、一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图在这20位同学中,本学期购买课外书的花费的众数和中位数分别是()A50,50B50,30C80,50D30,502世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司将0.056用科学记数法表示为( )A5.6101B5.6102C5.6103D0.561013如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是

3、( )AadbcBa+c+2b+dCa+b+14c+dDa+db+c4下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )ABCD5将三粒均匀的分别标有,的正六面体骰子同时掷出,朝上一面上的数字分别为,则,正好是直角三角形三边长的概率是()ABCD6如图,在正方形网格中建立平面直角坐标系,若A0,2,B1,1,则点C的坐标为( )A1,-2B1,-1C2,-1D2,17如图,已知AB和CD是O的两条等弦OMAB,ONCD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP下列四个说法中:;OM=ON;PA=PC;BPO=DPO,正确的个数是()A1B2C3D48下

4、列所述图形中,是轴对称图形但不是中心对称图形的是( )A线段B等边三角形C正方形D平行四边形9如图,则的大小是ABCD10平面直角坐标系中的点P(2m,m)在第一象限,则m的取值范围在数轴上可表示为( )ABCD11一次函数y=2x+1的图像不经过 ( )A第一象限 B第二象限 C第三象限 D第四象限12实数a,b,c,d在数轴上的对应点的位置如图所示,下列结论ab;|b|=|d|;a+c=a;ad0中,正确的有()A4个B3个C2个D1个二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上()AC的长等于_;()在线段AC上

5、有一点D,满足AB2=ADAC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明)_14如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 15有下列各式:;其中,计算结果为分式的是_(填序号)16因式分解:3x312x=_17将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x3,点B表示的数为2x+1,点C表示的数为4,若将ABC向右滚动,则x的值等于_,数字2012对应的点将与ABC的顶点_重合18如图,在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且ABx

6、轴,则以AB为边的等边三角形ABC的周长为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示求与之间的函数关系式,并写出自变量的取值范围;求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?20(6分)如图,M是平行四边形ABCD的对角线上的一点,射线A

7、M与BC交于点F,与DC的延长线交于点H(1)求证:AM2MF.MH(2)若BC2BDDM,求证:AMBADC21(6分)如图,中,于,点分别是的中点.(1)求证:四边形是菱形(2)如果,求四边形的面积22(8分)无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示(1)求日均销售量p(桶)与销售单价x(元)的函数关系;(2)若该经营部希望日均获利1350元,那么销售单价是多少?23(8分)从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是4

8、00千米,普通列车的行驶路程是高铁的行驶路程的13倍求普通列车的行驶路程;若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的25倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度24(10分)为节约用水,某市居民生活用水按阶梯式水价计量,水价分为三个阶梯,价格表如下表所示:某市自来水销售价格表类别月用水量(立方米)供水价格(元/立方米)污水处理费(元/立方米)居民生活用水阶梯一018(含18)1.901.00阶梯二1825(含25)2.85阶梯三25以上5.70(注:居民生活用水水价=供水价格+污水处理费)(1)当居民月用水量在18立方米及以下时,水价是_元/立

9、方米.(2)4月份小明家用水量为20立方米,应付水费为:18(1.90+1.00)+2(2.85+1.00)=59.90(元)预计6月份小明家的用水量将达到30立方米,请计算小明家6月份的水费.(3)为了节省开支,小明家决定每月用水的费用不超过家庭收入的1%,已知小明家的平均月收入为7530元,请你为小明家每月用水量提出建议25(10分)如图,在四边形中,为一条对角线,.为的中点,连结.(1)求证:四边形为菱形;(2)连结,若平分,求的长.26(12分)如图,O是ABC的外接圆,AB为直径,ODBC交O于点D,交AC于点E,连接AD、BD、CD(1)求证:ADCD;(2)若AB10,OE3,求

10、tanDBC的值27(12分)某商店销售两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需280元;购买3个A品牌和1个B品牌的计算器共需210元()求这两种品牌计算器的单价;()开学前,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的九折销售,B品牌计算器10个以上超出部分按原价的七折销售设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1,y2关于x的函数关系式()某校准备集体购买同一品牌的计算器,若购买计算器的数量超过15个,购买哪种品牌的计算器更合算?请说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题

11、给出的四个选项中,只有一项是符合题目要求的)1、A【解析】分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解详解:由扇形统计图可知,购买课外书花费为100元的同学有:2010%=2(人),购买课外书花费为80元的同学有:2025%=5(人),购买课外书花费为50元的同学有:2040%=8(人),购买课外书花费为30元的同学有:2020%=4(人),购买课外书花费为20元的同学有:205%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,

12、30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)2=50(元) 故选A点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系2、B【解析】0.056用科学记数法表示为:0.056=,故选B.3、A【解析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论【详解】解:依题意,得:ba+1,ca+7,da+1A、ada(a+1)1,bca+1(a+7)6,adbc,选项A符合题意;B、a+c+2a+(a+7)+22a+9,b+da+1+(a+1)2a

13、+9,a+c+2b+d,选项B不符合题意;C、a+b+14a+(a+1)+142a+15,c+da+7+(a+1)2a+15,a+b+14c+d,选项C不符合题意;D、a+da+(a+1)2a+1,b+ca+1+(a+7)2a+1,a+db+c,选项D不符合题意故选:A【点睛】考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键4、B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.5、C【解析】三粒均匀的正六面体骰子同时掷出共出现216种情况

14、,而边长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可.【详解】解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为,故选C.【点睛】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.边长为3,4,5的三角形组成直角三角形.6、C【解析】根据A点坐标即可建立平面直角坐标【详解】解:由A(0,2),B(1,1)可知原点的位置,建立平面直角坐标系,如图,C(2,

15、-1)故选:C【点睛】本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型7、D【解析】如图连接OB、OD;AB=CD,=,故正确OMAB,ONCD,AM=MB,CN=ND,BM=DN,OB=OD,RtOMBRtOND,OM=ON,故正确,OP=OP,RtOPMRtOPN,PM=PN,OPB=OPD,故正确,AM=CN,PA=PC,故正确,故选D8、B【解析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解【详解】解:A、线段,是轴对称图形,也是中心对称图形,故本选项不符合题意;B、等边三角形,是轴对称图形但不是中心对称图形,故本选项符合题意;C、正方形,是轴对称图形

16、,也是中心对称图形,故本选项不符合题意;D、平行四边形,不是轴对称图形,是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合9、D【解析】依据,即可得到,再根据,即可得到【详解】解:如图,又,故选:D【点睛】本题主要考查了平行线的性质,两直线平行,同位角相等10、B【解析】根据第二象限中点的特征可得: ,解得: .在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征11、D【解析】根据一次函数的系数判断出函数图象所经过的象限,由

17、k=20,b=10可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答.【详解】k=20,b=10,根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限.故选D.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.12、B【解析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案【详解】解:由数轴,得a=-3.5,b=-2,c=0,d=2,ab,故正确;|b|=|d|,故正确;a+c=a,故正确;ad0,故错误;故选B【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左

18、边的大,有理数的运算,绝对值的意义是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、5 见解析 【解析】(1)由勾股定理即可求解;(2)寻找格点M和N,构建与ABC全等的AMN,易证MNAC,从而得到MN与AC的交点即为所求D点.【详解】(1)AC=;(2)如图,连接格点M和N,由图可知:AB=AM=4,BC=AN=,AC=MN=,ABCMAN,AMN=BAC,MAD+CAB=MAD+AMN=90,MNAC,易解得MAN以MN为底时的高为,AB2=ADAC,AD=AB2AC=,综上可知,MN与AC的交点即为所求D点.【点睛】本题考查了平面直角坐标系中定点的问题,理解第2问中

19、构造全等三角形从而确定D点的思路.14、11.【解析】试题解析:由折线统计图可知,周一的日温差=8+1=9;周二的日温差=7+1=8;周三的日温差=8+1=9;周四的日温差=9;周五的日温差=135=8;周六的日温差=1571=8;周日的日温差=165=11,这7天中最大的日温差是11考点:1.有理数大小比较;2.有理数的减法15、【解析】根据分式的定义,将每个式子计算后,即可求解.【详解】=1不是分式,=,=3不是分式,=故选.【点睛】本题考查分式的判断,解题的关键是清楚分式的定义.16、3x(x+2)(x2)【解析】先提公因式3x,然后利用平方差公式进行分解即可【详解】3x312x=3x(

20、x24)=3x(x+2)(x2),故答案为3x(x+2)(x2)【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解17、1 C 【解析】将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x1,点B表示的数为2x+1,点C表示的数为4,4(2x+1)=2x+1(x1);1x=9,x=1故A表示的数为:x1=11=6,点B表示的数为:2x+1=2(1)+1=5,即等边三角形ABC边长为1,数字2012对应的点与4的距离为:2012+4=2016,20161=672,C从出发

21、到2012点滚动672周,数字2012对应的点将与ABC的顶点C重合故答案为1,C点睛:此题主要考查了等边三角形的性质,实数与数轴,一元一次方程等知识,本题将数与式的考查有机地融入“图形与几何”中,渗透“数形结合思想”、“方程思想”等,也是一道较优秀的操作活动型问题.18、18。【解析】根据二次函数的性质,抛物线的对称轴为x=3。A是抛物线与y轴的交点,点B是这条抛物线上的另一 点,且ABx轴。A,B关于x=3对称。AB=6。又ABC是等边三角形,以AB为边的等边三角形ABC的周长为63=18。三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1) (2)

22、,144元【解析】(1)利用待定系数法求解可得关于的函数解析式;(2)根据“总利润每件的利润销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得【详解】(1)设与的函数解析式为,将、代入,得:,解得:,所以与的函数解析式为;(2)根据题意知,当时,随的增大而增大,当时,取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元【点睛】本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质20、(1)证明见解析;(2)证明见解析.【解析】(1)由于ADBC,ABCD,通过三角形相

23、似,找到分别于,都相等的比,把比例式变形为等积式,问题得证(2)推出,再结合,可证得答案.【详解】(1)证明:四边形是平行四边形, ,即(2)四边形是平行四边形,又,即,又,, , ,.【点睛】本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.21、 (1)证明见解析;(2).【解析】(1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)根据等边三角形的性质得出EF=5,AD=5,进而得到菱形AEDF的面积S【详解

24、】解:(1)ADBC,点E、F分别是AB、AC的中点,RtABD中,DE=AB=AE,RtACD中,DF=AC=AF,又AB=AC,点E、F分别是AB、AC的中点,AE=AF,AE=AF=DE=DF,四边形AEDF是菱形;(2)如图,AB=AC=BC=10,EF=5,AD=5,菱形AEDF的面积S=EFAD55【点睛】本题考查菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半22、(1)日均销售量p(桶)与销售单价x(元)的函数关系为p=50 x+850;(2)该经营部希望日均获利1350元,那么销售单价是9元【解析】(1)设日均销售p(桶)与销售单

25、价x(元)的函数关系为:p=kx+b(k0),把(7,500),(12,250)代入,得到关于k,b的方程组,解方程组即可;(2)设销售单价应定为x元,根据题意得,(x-5)p-250=1350,由(1)得到p=-50 x+850,于是有(x-5)(-50 x+850)-250=1350,然后整理,解方程得到x1=9,x2=13,满足7x12的x的值为所求;【详解】(1)设日均销售量p(桶)与销售单价x(元)的函数关系为p=kx+b,根据题意得,解得k=50,b=850,所以日均销售量p(桶)与销售单价x(元)的函数关系为p=50 x+850;(2)根据题意得一元二次方程 (x5)(50 x+

26、850)250=1350,解得x1=9,x2=13(不合题意,舍去),销售单价不得高于12元/桶,也不得低于7元/桶,x=13不合题意,答:若该经营部希望日均获利1350元,那么销售单价是9元【点睛】本题考查了一元二次方程及一次函数的应用,解题的关键是通过题目和图象弄清题意,并列出方程或一次函数,用数学知识解决生活中的实际问题23、(1)520千米;(2)300千米/时【解析】试题分析:(1)根据普通列车的行驶路程=高铁的行驶路程13得出答案;(2)首先设普通列车的平均速度为x千米/时,则高铁平均速度为25x千米/时,根据题意列出分式方程求出未知数x的值试题解析:(1)依题意可得,普通列车的行

27、驶路程为40013=520(千米)(2)设普通列车的平均速度为x千米/时,则高铁平均速度为25x千米/时依题意有:=3 解得:x=120经检验:x=120分式方程的解且符合题意 高铁平均速度:25120=300千米/时答:高铁平均速度为 25120=300千米/时考点:分式方程的应用24、(1)1.90;(2)112.65元;(3)当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.【解析】试题分析:(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;(2)由题意可知小明家6月份的水费是:(1.9+1)18+(2.85+1)7+(5.70+1)

28、5=112.65(元);(3)由已知条件可知,用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不会超过25立方米,设他们家的用水量为x立方米,则由题意可得:18(1.9+1)+(x-18)(2.85+1)75.3,解得:x24,即小明家每月的用水量不要超过24立方米.试题解析:(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;(2)由题意可得:小明家6月份的水费是:(1.9+1)18+(2.85+1)7+(5.70+1)5=112.65(元);(3)由题意可知,当用水量为

29、18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不超过18立方米,而不足25立方米,设他们家的用水量为x立方米,则由题意可得:18(1.9+1)+(x-18)(2.85+1)75.3,解得:x24,当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.25、(1)证明见解析;(2)AC=;【解析】(1)由DE=BC,DEBC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)只要证明ACD是直角三角形,ADC=60,AD=2即可解决问题;【详解】(1)证明:AD=2BC,E为AD的中点,DE=BC, ADBC,四边形BCDE是平行四边形,ABD=90,AE=DE,BE=DE,四边形BCDE是菱形(2)连接AC,如图所示:ADB=30,ABD=90,AD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论