版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图所示,ab,直线a与直线b之间的距离是( )A线段PA的长度B线段PB的长度C线段PC的长度D线段CD的长度2一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数从左面看到的这个几何体的形状图的是()ABC
2、D3不等式组的解集为则的取值范围为( )ABCD4如图,从一块圆形纸片上剪出一个圆心角为90的扇形ABC,使点A、B、C在圆周上,将剪下的扇形作为一个圆锥侧面,如果圆锥的高为,则这块圆形纸片的直径为( )A12cmB20cmC24cmD28cm5为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表则这9名学生每周做家务劳动的时间的众数及中位数分别是()每周做家务的时间(小时)01234人数(人)22311A3,2.5B1,2C3,3D2,262018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数180000000
3、0用科学记数法表示为()A18108 B1.8108 C1.8109 D0.1810107运用图形变化的方法研究下列问题:如图,AB是O的直径,CD,EF是O的弦,且ABCDEF,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )ABCD8如图,点M是正方形ABCD边CD上一点,连接MM,作DEAM于点E,BFAM于点F,连接BE,若AF1,四边形ABED的面积为6,则EBF的余弦值是()ABCD9化简的结果是( )ABCD2(x1)10如图是一个正方体展开图,把展开图折叠成正方体后,“爱”字一面相对面上的字是()A美B丽C泗D阳二、填空题(共7小题,每小题3分,满分21分)11如图
4、,在ABC中,点D是AB边上的一点,若ACDB,AD1,AC2,ADC的面积为1,则BCD的面积为_12如图,在正六边形ABCDEF的上方作正方形AFGH,联结GC,那么的正切值为_13如图,在平面直角坐标系xOy中,DEF可以看作是ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由ABC得到DEF的过程:_14如图,在RtABC中,BAC=90,AB=AC=4,D是BC的中点,点E在BA的延长线上,连接ED,若AE=2,则DE的长为_15有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮
5、廓的周长是_.有个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则的最大值为_16如图,在正方形ABCD中,BC=2,E、F分别为射线BC,CD上两个动点,且满足BE=CF,设AE,BF交于点G,连接DG,则DG的最小值为_17二次函数y=x2-2x+1的对称轴方程是x=_.三、解答题(共7小题,满分69分)18(10分)如图,二次函数的图象与x轴的一个交点为,另一个交点为A,且与y轴相交于C点求m的值及C点坐标;在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由为抛
6、物线上一点,它关于直线BC的对称点为Q当四边形PBQC为菱形时,求点P的坐标;点P的横坐标为,当t为何值时,四边形PBQC的面积最大,请说明理由19(5分)如图,直线l是线段MN的垂直平分线,交线段MN于点O,在MN下方的直线l上取一点P,连接PN,以线段PN为边,在PN上方作正方形NPAB,射线MA交直线l于点C,连接BC(1)设ONP,求AMN的度数;(2)写出线段AM、BC之间的等量关系,并证明20(8分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元 (1)求A、B两种钢笔每支各多少元? (2)若该文具店要购进A,
7、B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案? (3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?21(10分)如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、
8、D两点.已知点C的坐标是(6,-1),D(n,3).求m的值和点D的坐标.求的值.根据图象直接写出:当x为何值时,一次函数的值大于反比例函数的值?22(10分)如图,四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,BFC=BAD=2DFC求证:(1)CDDF;(2)BC=2CD23(12分)某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分请根据图表信息回答下列问题:视力频数(人)频率4.0 x4.3200.14.3x4.6400.24.6x4.9700.354.9x5.2a0.35.2x5.510b(1)本次调
9、查的样本为 ,样本容量为 ;在频数分布表中,a ,b ,并将频数分布直方图补充完整;若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?24(14分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,
10、试求今年该地至少有多少户享受到优先搬迁租房奖励?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】分析:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,由此可得出答案.详解:ab,APBC两平行直线a、b之间的距离是AP的长度根据平行线间的距离相等直线a与直线b之间的距离AP的长度故选A.点睛:本题考查了平行线之间的距离,属于基础题,关键是掌握平行线之间距离的定义.2、B【解析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1据此可画出图形详解:由俯视图及其
11、小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B点睛:此题主要考查了几何体的三视图画法由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字3、B【解析】求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可【详解】解:解不等式组,得不等式组的解集为x2,k12,解得k1故选:B【点睛】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中4、C【
12、解析】设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,利用等腰直径三角形的性质得到AB=R,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2r=,解得r=R,然后利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即可得到这块圆形纸片的直径【详解】设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,则AB=R,根据题意得:2r=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以这块圆形纸片的直径为24cm故选C【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长5、D【解析】试题解析
13、:表中数据为从小到大排列数据1小时出现了三次最多为众数;1处在第5位为中位数所以本题这组数据的中位数是1,众数是1故选D考点:1.众数;1.中位数.6、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:1800000000=1.8109,故选:C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值7、A【解析】【分析】作直径CG,连接
14、OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明SOCD=SACD,SOEF=SAEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解【详解】作直径CG,连接OD、OE、OF、DGCG是圆的直径,CDG=90,则DG=8,又EF=8,DG=EF,S扇形ODG=S扇形OEF,ABCDEF,SOCD=SACD,SOEF=SAEF,S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=52=,故选A【点睛】本题考查扇形面积的计算,圆周角定理本题中找出两个阴影部分面积之
15、间的联系是解题的关键8、B【解析】首先证明ABFDEA得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于ABE的面积与ADE的面积之和得到xx+x1=6,解方程求出x得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE,最后利用余弦的定义求解【详解】四边形ABCD为正方形,BAAD,BAD90,DEAM于点E,BFAM于点F,AFB90,DEA90,ABF+BAF90,EAD+BAF90,ABFEAD,在ABF和DEA中 ABFDEA(AAS),BFAE;设AEx,则BFx,DEAF1,四边形ABED的面积为6,解得x13,x24(舍去),EFx
16、12,在RtBEF中,故选B【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质会运用全等三角形的知识解决线段相等的问题也考查了解直角三角形9、A【解析】原式利用除法法则变形,约分即可得到结果【详解】原式=(x1)=故选A【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键10、D【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”字一面相对面上的字是“阳”;故本题答案为:D.【点睛】本题主要考查了正方体相对两个面上的文字
17、,注意正方体的空间图形是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、1【解析】由ACD=B结合公共角A=A,即可证出ACDABC,根据相似三角形的性质可得出()2,结合ADC的面积为1,即可求出BCD的面积【详解】ACDB,DACCAB,ACDABC,()2()2,SABC4SACD4,SBCDSABCSACD411故答案为1【点睛】本题考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定与性质.12、【解析】延长GF与CD交于点D,过点E作交DF于点M,设正方形的边长为,则解直角三角形可得,根据正切的定义即可求得的正切值【详解】延长GF与CD交于点D,过点E作交DF
18、于点M, 设正方形的边长为,则, 故答案为:【点睛】考查正多边形的性质,锐角三角函数,构造直角三角形是解题的关键.13、平移,轴对称【解析】分析:根据平移的性质和轴对称的性质即可得到由OCD得到AOB的过程详解:ABC向上平移5个单位,再沿y轴对折,得到DEF,故答案为:平移,轴对称点睛:考查了坐标与图形变化-旋转,平移,轴对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小14、2 【解析】过点E作EFBC于F,根据已知条件得到BEF是等腰直角三角形,求得BEABAE6,根据勾股定理得到BFEF3,求得DFBFBD,根
19、据勾股定理即可得到结论【详解】解:过点E作EFBC于F,BFE90,BAC90,ABAC4,BC45,BC4,BEF是等腰直角三角形,BEABAE6,BFEF3,D是BC的中点,BD2,DFBFBD,DE=2故答案为2【点睛】本题考查了等腰直角三角形的性质,勾股定理,正确的作出辅助线构造等腰直角三角形是解题的关键15、18 1 【解析】有四个边长均为1的正六边形,采用方式1拼接,利用4n+2的规律计算;把六个正六边形围着一个正六边按照方式2进行拼接可使周长为8,六边形的个数最多【详解】解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为44+2=18;按下图拼接,图案的外轮
20、廓的周长为18,此时正六边形的个数最多,即n的最大值为1故答案为:18;1【点睛】本题考查了正多边形和圆,以及图形的变化类规律总结问题,根据题意,得出规律是解决此题的关键16、1【解析】先由图形确定:当O、G、D共线时,DG最小;根据正方形的性质证明ABEBCF(SAS),可得AGB=90,利用勾股定理可得OD的长,从而得DG的最小值【详解】在正方形ABCD中,AB=BC,ABC=BCD,在ABE和BCF中,ABEBCF(SAS),BAE=CBF,CBF+ABF=90BAE+ABF=90AGB=90点G在以AB为直径的圆上,由图形可知:当O、G、D在同一直线上时,DG有最小值,如图所示:正方形
21、ABCD,BC=2,AO=1=OGOD=,DG=1,故答案为1.【点睛】本题考查了正方形的性质与全等三角形的判定与性质,解题的关键是熟练的掌握正方形的性质与全等三角形的判定与性质.17、1【解析】利用公式法可求二次函数y=x2-2x+1的对称轴也可用配方法【详解】-=-=1,x=1故答案为:1【点睛】本题考查二次函数基本性质中的对称轴公式;也可用配方法解决三、解答题(共7小题,满分69分)18、,;存在,;或;当时,.【解析】(1)用待定系数法求出抛物线解析式;(2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;(3)先判断出四边形PBQC时菱形时,点P是线段B
22、C的垂直平分线,利用该特殊性建立方程求解;先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值【详解】解:(1)将B(4,0)代入,解得,m=4,二次函数解析式为,令x=0,得y=4,C(0,4);(2)存在,理由:B(4,0),C(0,4),直线BC解析式为y=x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,MBC面积最大,=14b=0,b=4,M(2,6);(3)如图,点P在抛物线上,设P(m,),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,B(4,0),C(0,4),线段BC的垂直平分线的解析式为y=x,m=,m=,P(,)或P(,);如图,设点P(t
23、,),过点P作y轴的平行线l,过点C作l的垂线,点D在直线BC上,D(t,t+4),PD=(t+4)=,BE+CF=4,S四边形PBQC=2SPDC=2(SPCD+SBD)=2(PDCF+PDBE)=4PD=0t4,当t=2时,S四边形PBQC最大=1考点:二次函数综合题;二次函数的最值;最值问题;分类讨论;压轴题19、(1)45(2),理由见解析【解析】(1)由线段的垂直平分线的性质可得PMPN,POMN,由等腰三角形的性质可得PMNPNM,由正方形的性质可得APPN,APN90,可得APO,由三角形内角和定理可求AMN的度数;(2)由等腰直角三角形的性质和正方形的性质可得,MNCANB45
24、,可证CBNMAN,可得【详解】解:(1)如图,连接MP,直线l是线段MN的垂直平分线,PMPN,POMNPMNPNMMPONPO90,四边形ABNP是正方形APPN,APN90APMP,APO90(90)APMMPOAPO(90)902,APPM,AMNAMPPMN4545(2)理由如下:如图,连接AN,CN,直线l是线段MN的垂直平分线,CMCN,CMNCNM45,MCN90,四边形APNB是正方形ANBBAN45,MNCANB45ANMBNC又CBNMAN【点睛】本题考查了正方形的性质,线段垂直平分线的性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键20、(1) A
25、种钢笔每只15元 B种钢笔每只20元;(2) 方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种钢笔46支;(3) 定价为33元或34元,最大利润是728元.【解析】(1)设A种钢笔每只x元,B种钢笔每支y元,由题意得 ,解得: ,答:A种钢笔每只15元,B种钢笔每支20元;(2)设购进A种钢笔z支,由题意得:,42.4z45,z是整数z=43,44,90-z=47,或46;共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,方案二:购进A种钢笔44只,购进B种钢笔46只;(3)W=(30-20+a)(68-4a)=-4a+28a+68
26、0=-4(a-)+729,-40,W有最大值,a为正整数,当a=3,或a=4时,W最大,W最大=-4(3-)+729=728,30+a=33,或34;答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元21、(1)m=-6,点D的坐标为(-2,3);(2);(3)当或时,一次函数的值大于反比例函数的值.【解析】(1)将点C的坐标(6,-1)代入即可求出m,再把D(n,3)代入反比例函数解析式求出n即可.(2)根据C(6,-1)、D(-2,3)得出直线CD的解析式,再求出直线CD与x轴和y轴的交点即可,得出OA、OB的长,再根据锐角三角函数的定义即可求得;(3)根据函数的图
27、象和交点坐标即可求得【详解】把C(6,-1)代入,得. 则反比例函数的解析式为,把代入,得,点D的坐标为(-2,3). 将C(6,-1)、D(-2,3)代入,得,解得.一次函数的解析式为,点B的坐标为(0,2),点A的坐标为(4,0). ,在在中,. 根据函数图象可知,当或时,一次函数的值大于反比例函数的值【点睛】此题考查了反比例函数与一次函数的交点问题其知识点有解直角三角形,待定系数法求解析式,此题难度适中,注意掌握数形结合思想与方程思想的应用22、(1)详见解析;(2)详见解析.【解析】(1)利用在同圆中所对的弧相等,弦相等,所对的圆周角相等,三角形内角和可证得CDF=90,则CDDF;(2)应先找到BC的一半,证明BC的一半和CD相等即可【详解】证明:(1)AB=AD,弧AB=弧AD,ADB=ABDACB=ADB,A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论