版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,AB是O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使AD
2、C与BDA相似,可以添加一个条件下列添加的条件中错误的是( ) AACDDABBADDECADABCDBDDAD2BDCD2在ABC中,C90,tanA125,ABC的周长为60,那么ABC的面积为()A60B30C240D1203某校九年级(1)班全体学生实验考试的成绩统计如下表:成绩(分)24252627282930人数(人)2566876根据上表中的信息判断,下列结论中错误的是()A该班一共有40名同学B该班考试成绩的众数是28分C该班考试成绩的中位数是28分D该班考试成绩的平均数是28分4某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60,否则就有危险,那么梯
3、子的长至少为( )A8米B83米C833米D433米5如图,将边长为8的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是( )A3cmB4cmC5cmD6cm6在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )ABCD71.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()ABCD8如图,AB是O的直径,AB8,弦CD垂直平分OB,E是弧AD上的动点,AFCE于点F,点E在弧AD上从A运动到D的过程中,线段CF扫过的面积为()A4+3B4+C+D+39我国古代数学著作孙子算经中有“多人共车”问题:今有三人共车,二车空;二人共车,
4、九人步问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车辆,根据题意,可列出的方程是 ( )ABCD10如图,点O为平面直角坐标系的原点,点A在x轴上,OAB是边长为4的等边三角形,以O为旋转中心,将OAB按顺时针方向旋转60,得到OAB,那么点A的坐标为()A(2,2)B(2,4)C(2,2)D(2,2)11如图,把一块含有45角的直角三角板的两个顶点放在直尺的对边上如果1=20,那么2的度数是( )A30B25C20D1512的平方根是( )A2BC2D二、填空题:(本大题共6个小题,每小题4分,共24分)13有一组数据:3,a,4,6
5、,7,它们的平均数是5,则a_,这组数据的方差是_14如图,A、B是双曲线y=上的两点,过A点作ACx轴,交OB于D点,垂足为C若D为OB的中点,ADO的面积为3,则k的值为_15分式与的最简公分母是_16如图,在平面直角坐标系中,OB在x轴上,ABO90,点A的坐标为(2,4),将AOB绕点A逆时针旋转90,点O的对应点C恰好落在反比例函数y的图象上,则k的值为_17有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是_.有个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图
6、案的外轮廓的周长为18,则的最大值为_18如果a,b分别是2016的两个平方根,那么a+bab=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?20(6分)如图,已知点D在ABC的外部,ADBC,点E在边AB上,ABADBCAE求证:BACAED;在边AC取一点F,如果
7、AFED,求证:21(6分)已知:如图,在ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且AGE=CGN.(1)求证:四边形ENFM为平行四边形;(2)当四边形ENFM为矩形时,求证:BE=BN.22(8分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟 米,乙在地时距地面的高度为 米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间
8、的函数关系式(3)登山多长时间时,甲、乙两人距地面的高度差为50米?23(8分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款某公司为奖励员工,购买了甲种商品20件,乙种商品x(x20)件(1)分别直接写出优惠方案一购买费用y1(元)、优惠方案二购买费用y2(元)与所买乙种商品x(件)之间的函数关系式;(2)若该公司共需要甲种商品20件,乙种商品40件设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买请你写出总费用w与m之间的关系式;利用w与m之间的
9、关系式说明怎样购买最实惠24(10分)关于x的一元二次方程mx2+(3m2)x61(1)当m为何值时,方程有两个不相等的实数根;(2)当m为何整数时,此方程的两个根都为负整数25(10分)在“打造青山绿山,建设美丽中国”的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具,下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式
10、。(2)若要使租车总费用不超过19720元,一共有几种租车方案?那种租车方案最省钱?26(12分)在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万元?27(12分)在平面直角坐标系xOy中,若抛物线顶点A的横坐标是,且与y轴交于点,点P为抛物线上一点求抛物线的表达式;若将抛物线向下平移4个单位,点P平移后的对应点为如果,求点Q的坐标参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析
11、】解:ADC=ADB,ACD=DAB,ADCBDA,故A选项正确;AD=DE, ,DAE=B,ADCBDA,故B选项正确;AD2=BDCD,AD:BD=CD:AD,ADCBDA,故C选项正确;CDAB=ACBD,CD:AC=BD:AB,但ACD=ABD不是对应夹角,故D选项错误,故选:D考点:1圆周角定理2相似三角形的判定2、D【解析】由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x的值,确定出两直角边,即可求出三角形面积【详解】如图所示,由tanA125,设BC12x,AC5x,根据勾股定理得:AB13x,由题意得:12x+5x+13x60,
12、解得:x2,BC24,AC10,则ABC面积为120,故选D【点睛】此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键3、D【解析】直接利用众数、中位数、平均数的求法分别分析得出答案【详解】解:A、该班一共有2+5+6+6+8+7+6=40名同学,故此选项正确,不合题意;B、该班考试成绩的众数是28分,此选项正确,不合题意;C、该班考试成绩的中位数是:第20和21个数据的平均数,为28分,此选项正确,不合题意;D、该班考试成绩的平均数是:(242+255+266+276+288+297+306)40=27.45(分),故选项D错误,符合题意故选D【点睛】此题
13、主要考查了众数、中位数、平均数的求法,正确把握相关定义是解题关键4、C【解析】此题考查的是解直角三角形如图:AC=4,ACBC,梯子的倾斜角(梯子与地面的夹角)不能60ABC60,最大角为60即梯子的长至少为833米,故选C.5、A【解析】分析:根据折叠的性质,只要求出DN就可以求出NE,在直角CEN中,若设CN=x,则DN=NE=8x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长详解:设CN=xcm,则DN=(8x)cm,由折叠的性质知EN=DN=(8x)cm,而EC=BC=4cm,在RtECN中,由勾股定理可知EN2=EC2+CN2,即(8x)2=16+x2,整理得16x=4
14、8,所以x=1故选:A点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题6、C【解析】根据轴对称图形和中心对称图形的定义进行分析即可.【详解】A、不是轴对称图形,也不是中心对称图形故此选项错误;B、不是轴对称图形,也不是中心对称图形故此选项错误;C、是轴对称图形,也是中心对称图形故此选项正确;D、是轴对称图形,但不是中心对称图形故此选项错误故选C【点睛】考点:1、中心对称图形;2、轴对称图形7、D【解析】根据轴对称图形的概念求解如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴【详解】A、不是轴
15、对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意故选D.【点睛】本题主要考查轴对称图形的知识点确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合8、A【解析】连AC,OC,BC线段CF扫过的面积扇形MAH的面积+MCH的面积,从而证明即可解决问题【详解】如下图,连AC,OC,BC,设CD交AB于H,CD垂直平分线段OB,COCB,OCOB,OCOBBC,AB是直径,点F在以AC为直径的M上运动,当E从A运动到D时,点F从A运动到H,连接MH,MAMH,CF扫过的面积为,故选:A【点睛】本题主要考查了阴影部分面
16、积的求法,熟练掌握扇形的面积公式及三角形的面积求法是解决本题的关键.9、B【解析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.10、D【解析】分析:作BCx轴于C,如图,根据等边三角形的性质得则易得A点坐标和O点坐标,再利用勾股定理计算出然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得则点A与点
17、B重合,于是可得点A的坐标详解:作BCx轴于C,如图,OAB是边长为4的等边三角形 A点坐标为(4,0),O点坐标为(0,0),在RtBOC中, B点坐标为 OAB按顺时针方向旋转,得到OAB, 点A与点B重合,即点A的坐标为 故选D.点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质.11、B【解析】根据题意可知1+2+45=90,2=90145=25,12、D【解析】先化简,然后再根据平方根的定义求解即可【详解】=2,2的平方根是,的平方根是故选D【点睛】本题考查了平方根的定义以及算术平方根,先把正确化简是解题的关键,本题比较容易出错二、填空题:(本大题共6个小题
18、,每小题4分,共24分)13、5 1 【解析】一组数据:3,a,4,6,7,它们的平均数是5,解得,1.故答案为5,1.14、1【解析】过点B作BEx轴于点E,根据D为OB的中点可知CD是OBE的中位线,即CD=BE,设A(x,),则B(2x,),故CD=,AD=,再由ADO的面积为1求出k的值即可得出结论解:如图所示,过点B作BEx轴于点E,D为OB的中点,CD是OBE的中位线,即CD=BE设A(x,),则B(2x,),CD=,AD=,ADO的面积为1,ADOC=3,()x=3,解得k=1,故答案为115、3a2b【解析】利用取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母求解即可【
19、详解】分式与的最简公分母是3a2b故答案为3a2b【点睛】本题考查最简公分母,解题的关键是掌握求最简公分母的方法.16、1【解析】根据题意和旋转的性质,可以得到点C的坐标,把点C坐标代入反比例函数y=中,即可求出k的值【详解】OB在x轴上,ABO=90,点A的坐标为(2,4),OB=2,AB=4将AOB绕点A逆时针旋转90,AD=4,CD=2,且AD/x轴点C的坐标为(6,2),点O的对应点C恰好落在反比例函数y=的图象上,k=2,故答案为1【点睛】本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答17、18 1 【解析】有四个边长均
20、为1的正六边形,采用方式1拼接,利用4n+2的规律计算;把六个正六边形围着一个正六边按照方式2进行拼接可使周长为8,六边形的个数最多【详解】解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为44+2=18;按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n的最大值为1故答案为:18;1【点睛】本题考查了正多边形和圆,以及图形的变化类规律总结问题,根据题意,得出规律是解决此题的关键18、1【解析】先由平方根的应用得出a,b的值,进而得出a+b=0,代入即可得出结论【详解】a,b分别是1的两个平方根, a,b分别是1的两个平方根,a+b=0,ab=a(a)=a
21、2=1,a+bab=0(1)=1,故答案为:1【点睛】此题主要考查了平方根的性质和意义,解本题的关键是熟练掌握平方根的性质三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天根据题意,得,解得x=1经检验,x=1是方程的解且符合题意1.5 x=2甲,乙两公司单独完成此项工程,各需1天,2天(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y1500)元,根据题意得12(y+y1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:15000=100000(
22、元);乙公司单独完成此项工程所需的施工费:2(50001500)=105000(元);让一个公司单独完成这项工程,甲公司的施工费较少【解析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可(2)分别求得两个公司施工所需费用后比较即可得到结论20、见解析【解析】(1)欲证明BACAED,只要证明CBADAE即可;(2)由DAECBA,可得,再证明四边形ADEF是平行四边形,推出DEAF,即可解决问题;【详解】证明(1)ADBC,BDAE,ABADBCAE,CBADAE,BACAED(2)由(1)得DAECBADC,AFED,AFEC,EF
23、BC,ADBC,EFAD,BACAED,DEAC,四边形ADEF是平行四边形,DEAF,【点睛】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型21、(1)证明见解析;(2)证明见解析.【解析】分析:(1)由已知条件易得EAG=FCG,AG=GC结合AGE=FGC可得EAGFCG,从而可得EAGFCG,由此可得EG=FG,同理可得MG=NG,由此即可得到四边形ENFM是平行四边形;(2)如下图,由四边形ENFM为矩形可得EG=NG,结合AG=CG,AGE=CGN可得EAGNCG,则BAC=ACB ,AE=CN,从而可得AB=CB,由此
24、可得BE=BN.详解:(1)四边形ABCD为平行四四边形边形,AB/CD. EAG=FCG. 点G为对角线AC的中点,AG=GC. AGE=FGC,EAGFCG. EG=FG. 同理MG=NG.四边形ENFM为平行四边形. (2)四边形ENFM为矩形,EF=MN,且EG=,GN=,EG=NG,又AG=CG,AGE=CGN,EAGNCG,BAC=ACB ,AE=CN,AB=BC,AB-AE=CB-CN,BE=BN.点睛:本题是一道考查平行四边形的判定和性质及矩形性质的题目,熟练掌握相关图形的性质和判定是顺利解题的关键.22、(1)10;1;(2);(3)4分钟、9分钟或3分钟【解析】(1)根据速
25、度=高度时间即可算出甲登山上升的速度;根据高度=速度时间即可算出乙在A地时距地面的高度b的值;(2)分0 x2和x2两种情况,根据高度=初始高度+速度时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值综上即可得出结论【详解】(1)(10-100)20=10(米/分钟),b=312=1故答案为:10;1(2)当0 x2时,y=3x;当x2时,y=1+103(x-2)=1x-1当
26、y=1x-1=10时,x=2乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10 x+100(0 x20)当10 x+100-(1x-1)=50时,解得:x=4;当1x-1-(10 x+100)=50时,解得:x=9;当10-(10 x+100)=50时,解得:x=3答:登山4分钟、9分钟或3分钟时,甲、乙两人距地面的高度差为50米【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度时间找出y关于x的函数关系式;(3)将两
27、函数关系式做差找出关于x的一元一次方程23、(1)y1=80 x+4400;y2=64x+4800;(2)当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低【解析】(1)根据方案即可列出函数关系式;(2)根据题意建立w与m之间的关系式,再根据一次函数的增减性即可得出答案.解:(1)y1=20300+80(x-20) 得:y1=80 x+4400;y2=(20300+80 x)0.8 得:y2=64x+4800;(2)w=300m+300(20-m)+80(40-m)0.8, w=-4m+7360,因为w是m的一次函数,k=-40, 所以w随的增加而减小,m当m=20时,w取得最小值. 即按照方案一购买20件甲种商品;按照方案二购买20件乙种商品. 24、 (1) m1且m;(2) m=-1或m=-2.【解析】(1)由方程有两个不相等的实数根,可得1,列出关于m的不等式解之可得答案;(2) 解方程,得:,由m为整数,且方程的两个根均为负整数可得m的值.【详解】解:(1) =-4ac=(3m-2)+24m=(3m+2)1当m1且m时,方程有两个不相等实数根. (2)解方程,得:,m为整数,且方程的两个根均为负整数,m=-1或m=-2.m=-1或m=-2时,此方程的两个根都为负整数【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年绿色电力产供销一体化的经济分析
- 2026年桥梁工程项目管理的最佳实践
- 2026春招:小学教师面试题及答案
- 2026年桥梁抗震设计中的柔性结构应用
- 贴砖安全质量培训课件
- 货运驾驶员安全培训考核课件
- 货车尾板安全培训课件
- 医疗物联网在临床应用中的实践
- 货梯安全使用培训内容课件
- 2026年汉中职业技术学院单招职业技能笔试模拟试题带答案解析
- 甲醇的生产毕业论文
- 2025秋季新版八上语文新增名著《红岩》必考考点总结
- 直招军官笔试题目及答案
- 2024-2025学年浙江省杭州市学军中学高一(上)期末英语试卷
- 产业基金设立及管理流程
- 家具设计方案
- DB31T+1545-2025卫生健康数据分类分级要求
- 《人工智能基础》课程标准
- 青少年无人机培训课件
- 2025成人高考全国统一考试专升本英语试题及答案
- 教师课程开发能力提升专题培训心得体会
评论
0/150
提交评论