高一数学人教A版必修四教案:3.1.2 两角和与差的正弦、余弦、正切公式(2) Word版含答案_第1页
高一数学人教A版必修四教案:3.1.2 两角和与差的正弦、余弦、正切公式(2) Word版含答案_第2页
高一数学人教A版必修四教案:3.1.2 两角和与差的正弦、余弦、正切公式(2) Word版含答案_第3页
高一数学人教A版必修四教案:3.1.2 两角和与差的正弦、余弦、正切公式(2) Word版含答案_第4页
高一数学人教A版必修四教案:3.1.2 两角和与差的正弦、余弦、正切公式(2) Word版含答案_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、3.1.2两角和与差的正弦、余弦、正切公式(2)教案 教学分析1.两角和与差的正弦、余弦、正切公式是在研究了两角差的余弦公式的基础上,进一步研究具有“两角和差”关系的正弦、余弦、正切公式的.在这些公式的推导中,教科书都把对照、比较有关的三角函数式,认清其区别,寻找其联系和联系的途径作为思维的起点,如比较cos(-)与cos(+),它们都是角的余弦只是角形式不同,但不同角的形式从运算或换元的角度看都有内在联系,即+=-(-)的关系,从而由公式C(-)推得公式C(+),又如比较sin(-)与cos(-),它们包含的角相同但函数名称不同,这就要求进行函数名的互化,利用诱导公式(5)(6)即可推得公式

2、S(-)、S(+)等.2.通过对“两角和与差的正弦、余弦、正切公式”的推导,揭示了两角和、差的三角函数与这两角的三角函数的运算规律,还使学生加深了数学公式的推导、证明方法的理解.因此本节内容也是培养学生运算能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新能力,发现问题和解决问题的能力都有着十分重要的意义.3.本节的几个公式是相互联系的,其推导过程也充分说明了它们之间的内在联系,让学生深刻领会它们的这种联系,从而加深对公式的理解和记忆.本节几个例子主要目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯,教学中应当有意识地对学生的思维习惯进行引导,例如在面对问题时,要注意先认真分析

3、条件,明确要求,再思考应该联系什么公式,使用公式时要具备什么条件等.另外,还要重视思维过程的表述,不能只看最后结果而不顾过程表述的正确性、简捷性等,这些都是培养学生三角恒等变换能力所不能忽视的.二、三维目标1知识与技能:在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力.2过程与方法:通过两角和与差的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生

4、分析问题解决问题的能力.3情感态度与价值观:通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质.三、重点难点教学重点:两角和与差的正弦、余弦、正切公式及其推导.教学难点:灵活运用所学公式进行求值、化简、证明.四、课时安排2课时五、教学设想(一)导入新课 思路1.(复习导入)让学生回忆上节课所学的六个公式,并回忆公式的来龙去脉,然后让一个学生把公式默写在黑板上或打出幻灯.教师引导学生回顾比较各公式的结构特征,说出它们的区别和联系,以及公式的正用、逆用及变形用,以利于对公式的深刻理解.这节课我们将进一步探究两角和与差的正弦、余弦、正切公式的灵

5、活应用. 思路2.(问题导入)教师可打出幻灯,出示一组练习题让学生先根据上节课所学的公式进行解答.1.化简下列各式(1)cos()cossin()sin;(2);(3)2.证明下列各式(1)(2)tan()tan(-)(1-tan2tan2)tan2-tan2;(3)答案:1.(1)cos;(2)0;(3)1.2.证明略.教师根据学生的解答情况进行一一点拨,并对上节课所学的六个公式进行回顾复习,由此展开新课.(二)推进新课、新知探究、提出问题请同学们回忆这一段时间我们一起所学的和、差角公式.请同学们回顾两角和与差公式的区别与联系,可从推导体系中思考. 活动:待学生稍做回顾后,教师打出幻灯,出示

6、和与差角公式,让学生进一步在直观上发现它们内在的区别与联系,理解公式的推导充分发挥了向量的工具作用,更要体会由特殊到一般的数学思想方法.教师引导学生观察,当、中有一个角为90时,公式就变成诱导公式,所以前面所学的诱导公式其实是两角和与差公式的特例.在应用公式时,还要注意角的相对性,如=(+)-,等.让学生在整个的数学体系中学会数学知识,学会数学方法,更重要的是学会发现问题的方法,以及善于发现规律及其内在联系的良好习惯,提高数学素养.sin()sincoscossin();cos()coscossinsinC();tan()T().讨论结果:略.(三)应用示例思路1例1 利用和差角公式计算下列各

7、式的值.(1)sin72cos42-cos72sin42;(2)cos20cos70-sin20sin70;(3) 活动:本例实际上是公式的逆用,主要用来熟悉公式,可由学生自己完成.对部分学生,教师点拨学生细心观察题中式子的形式有何特点,再对比公式右边,马上发现(1)同公式S(-)的右边,(2)同公式C(+)右边形式一致,学生自然想到公式的逆用,从而化成特殊角的三角函数,并求得结果.再看(3)式与T(+)右边形式相近,但需要进行一定的变形.又因为tan45=1,原式化为,再逆用公式T(+)即可解得.解:(1)由公式S(-)得原式=sin(72-42)=sin30=.(2)由公式C(+)得原式=

8、cos(20+70)=cos90=0.(3)由公式T(+)得原式=tan(45+15)=tan60=. 点评:本例体现了对公式的全面理解,要求学生能够从正、反两个角度使用公式.与正用相比,反用表现的是一种逆向思维,它不仅要求有一定的反向思维意识,对思维的灵活性要求也高,而且对公式要有更全面深刻的理解.变式训练1.化简求值:(1)cos44sin14-sin44cos14;(2)sin14cos16+sin76cos74;(3)sin(54-x)cos(36+x)+cos(54-x)sin(36+x).解:(1)原式=sin(14-44)=sin(-30)=-sin30=.(2)原式=sin14

9、cos16+cos14sin16=sin(14+16)=sin30=.(3)原式=sin(54-x)+(36+x)=sin90=1.2.计算解:原式=tan(45-75)=tan(-30)=-tan30=.例2 已知函数f(x)=sin(x+)+cos (x-)的定义域为R,设0,2,若f(x)为偶函数,求的值. 活动:本例是一道各地常用的、基础性较强的综合性统考题,其难度较小,只需利用偶函数的定义,加上本节学到的两角和与差的三角公式展开即可,但不容易得到满分.教师可先让学生自己探究,独立完成,然后教师进行点评.解:f(x)为偶函数,f(-x)=f(x),即sin(-x+)+cos(-x-)=

10、sin(x+)+cos(x-),即-sinxcos+cosxsin+cosxcos-sinxsin=sinxcos+cosxsin+cosxcos+sinxsin.sinxcos+sinxsin=0.sinx(sin+cos)=0对任意x都成立.sin(+)=0,即sin(+)=0.+=k(kZ).=k-(kZ).又0,2),=或=. 点评:本例学生可能会根据偶函数的定义利用特殊值来求解.教师应提醒学生注意,如果将本例变为选择或填空,可利用特殊值快速解题,作为解答题利用特殊值是不严密的,以此训练学生逻辑思维能力.变式训练已知:,cos(-)=,sin(+)=,求cos2的值.解:,0-,+.又

11、cos(-)=,sin(+)= ,sin(-)=,cos(+)=.cos2=cos(+)-(-)=cos(+)cos(-)+sin(+)sin(-)=+()=.例3 求证:cos+sin=2sin(+). 活动:本题虽小但其意义很大,从形式上就可看出来,左边是两个函数,而右边是一个函数,教师引导学生给予足够的重视.对于此题的证明,学生首先想到的证法就是把等式右边利用公式S(+)展开,化简整理即可得到左边此为证法,这是很自然的,教师要给予鼓励.同时教师可以有目的的引导学生把等式左边转化为公式S(+)的右边的形式,然后逆用公式化简即可求得等式右边的式子,这种证明方法不仅仅是方法的变化,更重要的是把

12、两个三角函数化为一个三角函数.证明:方法一:右边=2(sincos+cossin)=2(cos+sin)=cos+sin=左边.方法二:左边=2(cos+sin)=2(sincos+cossin)=2sin(+)=右边. 点评:本题给出了两种证法,方法一是正用公式的典例,而方法二则是逆用公式证明的,此法也给了我们一种重要的转化方法,要求学生熟练掌握其精神实质.本例的方法二将左边的系数1与分别变为了与,即辅助角的正、余弦.关于形如asinx+bcosx(a,b不同时为零)的式子,引入辅助角变形为Asin(x+)的形式,其基本想法是“从右向左”用和角的正弦公式,把它化成Asin(x+)的形式.一般

13、情况下,如果a=os,b=Asin,那么asinx+bcosx=A(sinxcos+cosxsin)=Asin(x+).由sin2+cos2=1,可得A2=a2+b2,A=,不妨取A=,于是得到cos=,sin=,从而得到tan=,因此asinx+bcosx=sin(x+),通过引入辅助角,可以将asinx+bcosx这种形式的三角函数式化为一个角的一个三角函数的形式.化为这种形式可解决asinx+bcosx的许多问题,比如值域、最值、周期、单调区间等.教师应提醒学生注意,这种引入辅助角的变换思想很重要,即把两个三角函数化为一个三角函数,实质上是消元思想,这样就可以根据三角函数的图象与性质来研

14、究它的性质.因此在历年高考试题中出现的频率非常高,是三角部分中高考的热点,再结合续内容的倍角公式,在解答高考物理试题时也常常被使用,应让学生领悟其实质并熟练的掌握它.变式训练 化简下列各式:(1)sinx+cosx;(2)cosx-6sinx.解:(1)原式=2(sinx+cosx)=2(cossinx+sincosx)=2sin(x+).(2)原式=2 (cosx-sinx)=2(sincosx-cossinx)=2sin(-x).例4 (1)已知+=45,求(1+tan)(1+tan)的值;(2)已知sin(+)=,sin(-)=,求 活动:对于(1),教师可与学生一起观察条件,分析题意可

15、知,+是特殊角,可以利用两角和的正切公式得tan,tan的关系式,从而发现所求式子的解题思路.在(2)中,我们欲求若利用已知条件直接求tan,tan的值是有一定的困难,但细心观察公式S(+)、S(-)发现,它们都含有sincos和cossin,而化切为弦正是,由此找到解题思路.教学中尽可能的让学生自己探究解决,教师不要及早地给以提示或解答.解:(1)+=45,tan(+)=tan45=1.又tan(+)=tan+tan=tan(+)(1-tantan),即tan+tan=1-tantan.原式=1+tan+tan+tantan=1+(1-tantan)+tantan=2.(2)sin(+)=,

16、sin(-)= ,sincos+cossin=, sincos-coscos=. +得sincos=,-得cossin=, 点评:本题都是公式的变形应用,像(1)中当出现+为特殊角时,就可以逆用两角和的正切公式变形tan+tan=tan(+)(1-tantan),对于我们解题很有用处,而(2)中化切为弦的求法更是巧妙,应让学生熟练掌握其解法.变式训练1.求(1+tan1)(1+tan2)(1+tan3)(1+tan44)(1+tan45)的值.解:原式=(1+tan1)(1+tan44)(1+tan2)(1+tan43)(1+tan22)(1+tan23)(1+tan45)=2222=223.2.计算:tan15+tan30+tan15tan30.解:原式=tan45(1-tan15tan30)+tan15tan30=1.(四)作业已知一元二次方程ax2+bx+c=0(ac0)的两个根为tan、tan,求tan(+)的值.解:由韦达定理得:tan+tan=,t

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论