




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列图形中,可以看作是中心对称图形的是( )ABCD2已知,代数式的值为( )A11B1C1D113若x是2的相反数,|y|=3,则的值是()A2B4C2或4D2或44某校120名学生某一周用于阅读课外书籍的时间的频率分布直方
2、图如图所示其中阅读时间是810小时的频数和频率分别是( )A15,0.125B15,0.25C30,0.125D30,0.255若关于x的不等式组恰有3个整数解,则字母a的取值范围是()Aa1B2a1Ca1D2a16第四届济南国际旅游节期间,全市共接待游客686000人次将686000用科学记数法表示为()A686104 B68.6105 C6.86106 D6.861057如图,若数轴上的点A,B分别与实数1,1对应,用圆规在数轴上画点C,则与点C对应的实数是()A2B3C4D58下列图形中,哪一个是圆锥的侧面展开图?ABCD9对于非零的两个实数、,规定,若,则的值为( )ABCD10将抛物
3、线向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( )ABCD二、填空题(共7小题,每小题3分,满分21分)11已知在RtABC中,C90,BC5,AC12,E为线段AB的中点,D点是射线AC上的一个动点,将ADE沿线段DE翻折,得到ADE,当ADAB时,则线段AD的长为_12如图,抛物线yax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线MPN上移动,它们的坐标分别为M(1,4)、P(3,4)、N(3,1)若在抛物线移动过程中,点A横坐标的最小值为3,则ab+c的最小值是_13如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过
4、点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD.则AED的周长为_cm.14当a0,b0时化简:_15七巧板是我们祖先的一项创造,被誉为“东方魔板”,如图所示是一副七巧板,若已知SBIC=1,据七巧板制作过程的认识,求出平行四边形EFGH_16从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数1004008001 0002 0005 000发芽种子粒数853186527931 6044 005发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为_(精确到0.1)17如图,在矩形ABCD中,AB=5,B
5、C=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是_三、解答题(共7小题,满分69分)18(10分)我校春晚遴选男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去参加主持人精选。(1)选中的男主持人为甲班的频率是 (2)选中的男女主持人均为甲班的概率是多少?(用树状图或列表)19(5分)如图,某中学数学课外学习小组想测量教学楼的高度,组员小方在处仰望教学楼顶端处,测得,小方接着向教学楼方向前进到处,测得,已知,.(1)求教学楼的高度;(2)求的值.20(8分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机
6、邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图请根据图中信息解决下列问题:(1)共有 名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少21(10分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台 求甲、乙两种品牌空调的进货价; 该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元台,乙种品牌空调的售价为350
7、0元台请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润22(10分)如图,在中,是角平分线,平分交于点,经过两点的交于点,交于点,恰为的直径求证:与相切;当时,求的半径23(12分)如图,在ABC中,ABAC,以AB为直径作半圆O,交BC于点D,连接AD过点D作DEAC,垂足为点E求证:DE是O的切线;当O半径为3,CE2时,求BD长24(14分)为了丰富校园文化,促进学生全面发展我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比
8、赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;
9、故选:A点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180后能够重合2、D【解析】根据整式的运算法则,先利用已知求出a的值,再将a的值带入所要求解的代数式中即可得到此题答案.【详解】解:由题意可知:,原式故选:D【点睛】此题考查整式的混合运算,解题的关键在于利用整式的运算法则进行化简求得代数式的值3、D【解析】直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案【详解】解:x是1的相反数,|y|=3,x=-1,y=3,y-x=4或-1故选D【点睛】此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键4、D【解析】分析:根据频率分布直方图中的数据信息
10、和被调查学生总数为120进行计算即可作出判断.详解:由频率分布直方图可知:一周内用于阅读的时间在8-10小时这组的:频率:组距=0.125,而组距为2,一周内用于阅读的时间在8-10小时这组的频率=0.1252=0.25,又被调查学生总数为120人,一周内用于阅读的时间在8-10小时这组的频数=1200.25=30.综上所述,选项D中数据正确.故选D.点睛:本题解题的关键有两点:(1)要看清,纵轴上的数据是“频率:组距”的值,而不是频率;(2)要弄清各自的频数、频率和总数之间的关系.5、B【解析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出字母a的取值范围.【详解】解:x的
11、不等式组恰有3个整数解,整数解为1,0,-1,-2a-1.故选B.【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.6、D【解析】根据科学记数法的表示形式(a10n,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数)可得:686000=6.86105,故选:D7、B【解析】由数轴上的点A、B 分别与实数1,1对应,即可求得AB=2,再根据半径相等得到BC=2,由此即求得点C对应的实数【详解】数轴上的点 A,B 分别与实
12、数1,1 对应,AB=|1(1)|=2,BC=AB=2,与点 C 对应的实数是:1+2=3. 故选B【点睛】本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键8、B【解析】根据圆锥的侧面展开图的特点作答【详解】A选项:是长方体展开图B选项:是圆锥展开图.C选项:是棱锥展开图.D选项:是正方体展开图.故选B.【点睛】考查了几何体的展开图,注意圆锥的侧面展开图是扇形9、D【解析】试题分析:因为规定,所以,所以x=,经检验x=是分式方程的解,故选D.考点:1.新运算;2.分式方程.10、A【解析】根据二次函数的平移规律即可得出【详解】解:向右平移 1 个单位长度,再向下平移
13、3 个单位长度,所得的抛物线的函数表达式为故答案为:A【点睛】本题考查了二次函数的平移,解题的关键是熟知二次函数的平移规律二、填空题(共7小题,每小题3分,满分21分)11、或【解析】延长AD交AB于H,则AHAB,然后根据勾股定理算出AB,推断出ADHABC,即可解答此题同的解题思路一样【详解】解:分两种情况:如图1所示:设ADx,延长AD交AB于H,则AHAB,AHDC90,由勾股定理得:AB13,AA,ADHABC,即,解得:DHx,AHx,E是AB的中点,AEAB,HEAEAHx,由折叠的性质得:ADADx,AEAE,sinAsinA ,解得:x ;如图2所示:设ADADx,ADAB,
14、AHE90,同得:AEAE,DHx,AHADDHxx,cosAcosA ,解得:x ;综上所述,AD的长为 或故答案为 或【点睛】此题考查了勾股定理,三角形相似,关键在于做辅助线12、1【解析】由题意得:当顶点在M处,点A横坐标为-3,可以求出抛物线的a值;当顶点在N处时,y=a-b+c取得最小值,即可求解【详解】解:由题意得:当顶点在M处,点A横坐标为-3,则抛物线的表达式为:y=a(x+1)2+4,将点A坐标(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,当x=-1时,y=a-b+c,顶点在N处时,y=a-b+c取得最小值,顶点在N处,抛物线的表达式为:y=-(x-3)2
15、+1,当x=-1时,y=a-b+c=-(-1-3)2+1=-1,故答案为-1【点睛】本题考查的是二次函数知识的综合运用,本题的核心是确定顶点在M、N处函数表达式,其中函数的a值始终不变13、7【解析】根据翻折变换的性质可得BE=BC,DE=CD,然后求出AE,再求出ADE的周长=AC+AE【详解】折叠这个三角形点C落在AB边上的点E处,折痕为BD,BE=BC,DE=CD,AE=AB-BE=AB-BC=8-6=2cm,ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm故答案为:7.【点睛】本题考查了翻折变换的性质,翻折前后对应边相等,对应角相等14、【解析】分析
16、:按照二次根式的相关运算法则和性质进行计算即可.详解:,.故答案为:.点睛:熟记二次根式的以下性质是解答本题的关键:(1);(2)=.15、1【解析】根据七巧板的性质可得BI=IC=CH=HE,因为SBIC=1,BIC=90,可求得BI=IC=,BC=1,在求得点G到EF的距离为 sin45,根据平行四边形的面积即可求解.【详解】由七巧板性质可知,BI=IC=CH=HE又SBIC=1,BIC=90,BIIC=1,BI=IC=,BC=1,EF=BC=1,FG=EH=BI=,点G到EF的距离为:,平行四边形EFGH的面积=EF=1=1故答案为1【点睛】本题考查了七巧板的性质、等腰直角三角形的性质及
17、平行四边形的面积公式,熟知七巧板的性质是解决问题的关键.16、12【解析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论【详解】观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,该玉米种子发芽的概率为1.2,故答案为1.2【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比17、【解析】解:连接AG,由旋转变换的性质可知,ABG=CBE,BA=BG=5,BC=BE,由勾股定理得,CG=4,DG=DCCG=1,则AG=, ,ABG=CBE,ABGCBE,解得,CE=,故答案为【点睛】本题考查的是旋转变换的性
18、质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键三、解答题(共7小题,满分69分)18、 (1) (2) ,图形见解析.【解析】(1)根据概率的定义即可求出;(2)先根据题意列出树状图,再利用概率公式进行求解.【详解】(1)由题意P(选中的男主持人为甲班)=(2)列出树状图如下P(选中的男女主持人均为甲班的)=【点睛】此题主要考查概率的计算,解题的关键是根据题意列出树状图进行求解.19、(1)12m;(2)【解析】(1)利用即可求解;(2)通过三角形外角的性质得出,则,设,则,在 中利用勾股定理即可求出BC,BD的长度,最后利用即可求解【详解】解:(1)在中,答
19、:教学楼的高度为;(2)设,则,故,解得:,则故【点睛】本题主要考查解直角三角形,掌握勾股定理及正切,余弦的定义是解题的关键20、(1)100;(2)补图见解析;(3)570人.【解析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例【详解】(1)参与问卷调查的学生人数为(8+2)10%=100人,故答案为:100;(2)读4本的女生人数为10015%10=5人,读2本人数所占百分比为20+18100100%=38%,补全图形如下:(3)估计该
20、校学生一个月阅读2本课外书的人数约为150038%=570人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小21、(1)甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元【解析】(1)设甲种品牌空调的进货价为x元/台,则乙种品牌空调的进货价为1.2x元/台,根据数量=总价单价可得出关于x的分式方程,解之并检验后即可得出结论;(2)设购进甲种品牌空调a台,所获得
21、的利润为y元,则购进乙种品牌空调(10-a)台,根据总价=单价数量结合总价不超过16000 元,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由总利润=单台利润购进数量即可得出y关于a的函数关系式,利用一次函数的性质即可解决最值问题【详解】(1)由(1)设甲种品牌的进价为x元,则乙种品牌空调的进价为(1+20%)x元,由题意,得 ,解得x=1500,经检验,x=1500是原分式方程的解,乙种品牌空调的进价为(1+20%)1500=1800(元).答:甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)设购进甲种品牌空调a台,则购进乙种品牌空调(10-a)台,由题意,
22、得1500a+1800(10-a)16000,解得 a,设利润为w,则w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,因为-7000,则w随a的增大而减少,当a=7时,w最大,最大为12100元.答:当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元.【点睛】本题考查了一次函数的应用、分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价单价列出关于x的分式方程;(2)根据总利润=单台利润购进数量找出y关于a的函数关系式22、 (1)证明见解析;(2)【解析】(1)连接OM,证明OMBE,再结合等腰三角形
23、的性质说明AEBE,进而证明OMAE;(2)结合已知求出AB,再证明AOMABE,利用相似三角形的性质计算【详解】(1)连接OM,则OM=OB,1=2,BM平分ABC,1=3,2=3,OMBC,AMO=AEB,在ABC中,AB=AC,AE是角平分线,AEBC,AEB=90,AMO=90,OMAE,点M在圆O上,AE与O相切;(2)在ABC中,AB=AC,AE是角平分线,BE=BC,ABC=C,BC=4,cosC=BE=2,cosABC=,在ABE中,AEB=90,AB=6,设O的半径为r,则AO=6-r,OMBC,AOMABE,解得,的半径为【点睛】本题考查了切线的判定;等腰三角形的性质;相似三角形的判定与性质;解直角三角形等知识,综合性较强,正确添加辅助线,熟练运用相关知识是解题的关键.23、(1)证明见解析;(2)BD2【解析】(1)连接OD,AB为0的直径得ADB=90,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为ABC的中位线,所以ODAC,而DEAC,则ODDE,然后根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深度解析现代康复的课件
- 2024年美术设计师色彩理论与运用试题及答案
- 工学矛盾面试题及答案
- 纺织品行业基础知识的重要性试题及答案
- 破产法试题及答案
- 广告设计师考试中的必知试题与答案
- 税收基础历年试题及答案
- 提升消费力激发内需增长的有效路径与策略
- 《骨关节炎与钙质流失》课件
- 农业机器人发展趋势与市场前景洞察
- 上海市金山区2025届高三高考二模地理试卷(含答案)
- 《电气控制技术》课件-反接制动控制
- 华为市场面试题及答案
- 旅游港澳7天计划
- 2024年初级会计实务考试真题及答案(5套)
- 2024年高考化学真题完全解读(广东卷)
- 预防老年人痴呆
- 三年级信息科技第23课《分解描述问题》教学设计、学习任务单及课后练习
- 数据库应用技术-第三次形考作业(第10章~第11章)-国开-参考资料
- 设备调试工作流程
- 农业水利工程基础知识单选题100道及答案
评论
0/150
提交评论