山西临汾平阳2022年中考数学模拟预测题含解析及点睛_第1页
山西临汾平阳2022年中考数学模拟预测题含解析及点睛_第2页
山西临汾平阳2022年中考数学模拟预测题含解析及点睛_第3页
山西临汾平阳2022年中考数学模拟预测题含解析及点睛_第4页
山西临汾平阳2022年中考数学模拟预测题含解析及点睛_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1若,是一元二次方程3x2+2x9=0的两根,则的值是( ).ABCD2某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A9分 B8分 C7分 D6分3如果关于x的分式方程有负分数解,且关于x的不等式组的解集为xPB),如果AB

2、的长度为10cm,那么PB的长度为_cm12已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为_13如图,在矩形ABCD中,点E是边CD的中点,将ADE沿AE折叠后得到AFE,且点F在矩形ABCD内部将AF延长交边BC于点G若,则 (用含k的代数式表示)14工人师傅常用角尺平分一个任意角做法如下:如图,AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合过角尺顶点C的射线OC即是AOB的平分线做法中用到全等三角形判定的依据是_15在RtABC中,ACB=90,AC=8,BC=6,点

3、D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为_16已知图中的两个三角形全等,则1等于_三、解答题(共8题,共72分)17(8分)如图,在正方形ABCD中,AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求EAF的度数如图,在RtABD中,BAD=90,AB=AD,点M,N是BD边上的任意两点,且MAN=45,将ABM绕点A逆时针旋转90至ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由在图中,若EG=4,GF=6,求正方形ABCD的边长18(8分)如图,在RtABC中,CD,CE分别是斜边AB上的高,中线,B

4、Ca,ACb若a3,b4,求DE的长;直接写出:CD (用含a,b的代数式表示);若b3,tanDCE=,求a的值19(8分)如图1,ABC与CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN(1)观察猜想:图1中,PM与PN的数量关系是 ,位置关系是 (2)探究证明:将图1中的CDE绕着点C顺时针旋转(090),得到图2,AE与MP、BD分别交于点G、H,判断PMN的形状,并说明理由;(3)拓展延伸:把CDE绕点C任意旋转,若AC=4,CD=2,请直接写出PMN面积的最大值20(8分)益马高速通车后

5、,将桃江马迹塘的农产品运往益阳的运输成本大大降低马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元件)如下表所示:品种AB原来的运费4525现在的运费3020(1)求每次运输的农产品中A,B产品各有多少件;(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元21(8分)如图,已知AB为O的直径,AC是O的弦,D是弧

6、BC的中点,过点D作O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD(1)求证:A2BDF;(2)若AC3,AB5,求CE的长22(10分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图;经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率23(12分)如图,在ABC中,

7、AD是BC边上的高,BE平分ABC交AC边于E,BAC=60,ABE=25求DAC的度数24如图,已知正比例函数y=2x与反比例函数y=(k0)的图象交于A、B两点,且点A的横坐标为4,(1)求k的值;(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;(3)过原点O的另一条直线l交双曲线y=(k0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】分析:根据根与系数的关系可得出+=-、=-3,将其代入=中即可求出结论详解:、是一元二次方程3x2+2x-9=0的两根,

8、+=-,=-3,=故选C点睛:本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键2、C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6777899,故中位数为 :7分,故答案为:C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3、D【解析】解:,由得:x2

9、a+4,由得:x2,由不等式组的解集为x2,得到2a+42,即a3,分式方程去分母得:a3x3=1x,把a=3代入整式方程得:3x6=1x,即,符合题意;把a=2代入整式方程得:3x5=1x,即x=3,不合题意;把a=1代入整式方程得:3x4=1x,即,符合题意;把a=0代入整式方程得:3x3=1x,即x=2,不合题意;把a=1代入整式方程得:3x2=1x,即,符合题意;把a=2代入整式方程得:3x1=1x,即x=1,不合题意;把a=3代入整式方程得:3x=1x,即,符合题意;把a=4代入整式方程得:3x+1=1x,即x=0,不合题意,符合条件的整数a取值为3;1;1;3,之积为1故选D4、C

10、【解析】分析:直接利用积的乘方运算法则及合并同类项和同底数幂的乘除运算法则分别分析得出结果.详解:A. x2+5x2= ,本项错误;B. ,本项错误;C. ,正确;D.,本项错误.故选C.点睛:本题主要考查了积的乘方运算及合并同类项和同底数幂的乘除运算,解答本题的关键是正确掌握运算法则.5、D【解析】根据科学记数法的定义,科学记数法的表示形式为a10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值在确定n的值时,看该数是大于或等于1还是小于1当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0)【详解】解: 0.00

11、00025第一个有效数字前有6个0(含小数点前的1个0),从而故选D6、D【解析】根据整式的混合运算计算得到结果,即可作出判断【详解】A、2与a 不是同类项,不能合并,不符合题意;B、 =,不符合题意;C、原式=,不符合题意;D、=,符合题意,故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键7、B【解析】试题分析:ABCD,D=1=34,DECE,DEC=90,DCE=1809034=56故选B考点:平行线的性质8、C【解析】根据黄金分割点的定义,知BC为较长线段;则BC= AB,代入数据即可得出BC的值【详解】解:由于C为线段AB=2的黄金分割点,且ACBC,BC为较长

12、线段;则BC=2=-1故答案为:-1【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的 倍,较长的线段=原线段的 倍9、B【解析】根据俯视图是从上往下看的图形解答即可.【详解】从上往下看到的图形是:.故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.10、B【解析】根据最小的正整数是1解答即可【详解】最小的正整数是1故选B【点睛】本题考查了有理数的认识,关键是根据最小的正整数是1解答二、填空题(本大题共6个小题,每小题3分,共1

13、8分)11、(155)【解析】先利用黄金分割的定义计算出AP,然后计算AB-AP即得到PB的长【详解】P为AB的黄金分割点(APPB),AP=AB=10=55,PB=ABPA=10(55)=(155)cm故答案为(155)【点睛】本题考查了黄金分割:把线段AB分成两条线段AC和BC(ACBC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点其中AC=AB12、-2【解析】试题分析:根据题意可得2k+32,k2,解得k2因k为整数,所以k=2考点:一次函数图象与系数的关系13、。【解析】试题分析:如图,连接EG,设,则。点E是边C

14、D的中点,。ADE沿AE折叠后得到AFE,。易证EFGECG(HL),。在RtABG中,由勾股定理得: ,即。(只取正值)。14、SSS【解析】由三边相等得COMCON,即由SSS判定三角全等做题时要根据已知条件结合判定方法逐个验证【详解】由图可知,CM=CN,又OM=ON,在MCO和NCO中,COMCON(SSS),AOC=BOC,即OC是AOB的平分线故答案为:SSS【点睛】本题考查了全等三角形的判定及性质要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养15、1【解析】作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中

15、位线定理求得CE和EM的长,然后在CEM中根据三边关系即可求解【详解】作AB的中点E,连接EM、CE,在直角ABC中,AB=10,E是直角ABC斜边AB上的中点,CE=AB=5,M是BD的中点,E是AB的中点,ME=AD=2,在CEM中,5-2CM5+2,即3CM1,最大值为1,故答案为1【点睛】本题考查了点与圆的位置关系、三角形的中位线定理的知识,要结合勾股定理、直角三角形斜边上的中线等于斜边的一半解答16、58【解析】如图,2=1805072=58,两个三角形全等,1=2=58.故答案为58.三、解答题(共8题,共72分)17、 (1) 45(1) MN1=ND1+DH1理由见解析;(3)

16、11.【解析】(1)先根据AGEF得出ABE和AGE是直角三角形,再根据HL定理得出ABEAGE,故可得出BAE=GAE,同理可得出GAF=DAF,由此可得出结论;(1)由旋转的性质得出BAM=DAH,再根据SAS定理得出AMNAHN,故可得出MN=HN再由BAD=90,AB=AD可知ABD=ADB=45,根据勾股定理即可得出结论;(3)设正方形ABCD的边长为x,则CE=x-4,CF=x-2,再根据勾股定理即可得出x的值【详解】解:(1)在正方形ABCD中,B=D=90,AGEF,ABE和AGE是直角三角形在RtABE和RtAGE中,ABEAGE(HL),BAE=GAE同理,GAF=DAFE

17、AF=EAG+FAG=BAD=45(1)MN1=ND1+DH1由旋转可知:BAM=DAH,BAM+DAN=45,HAN=DAH+DAN=45HAN=MAN在AMN与AHN中,AMNAHN(SAS),MN=HNBAD=90,AB=AD,ABD=ADB=45HDN=HDA+ADB=90NH1=ND1+DH1MN1=ND1+DH1(3)由(1)知,BE=EG=4,DF=FG=2设正方形ABCD的边长为x,则CE=x-4,CF=x-2CE1+CF1=EF1,(x-4)1+(x-2)1=101解这个方程,得x1=11,x1=-1(不合题意,舍去)正方形ABCD的边长为11【点睛】本题考查的是几何变换综合

18、题,涉及到三角形全等的判定与性质、勾股定理、正方形的性质等知识,难度适中18、(1);(2);(3).【解析】(1)求出BE,BD即可解决问题(2)利用勾股定理,面积法求高CD即可(3)根据CD3DE,构建方程即可解决问题【详解】解:(1)在RtABC中,ACB91,a3,b4,CD,CE是斜边AB上的高,中线,BDC91,在RtBCD中,(2)在RtABC中,ACB91,BCa,ACb,故答案为:(3)在RtBCD中,又,CD3DE,即b3,2a9a2,即a2+2a91由求根公式得(负值舍去),即所求a的值是【点睛】本题考查解直角三角形的应用,直角三角形斜边中线的性质,勾股定理等知识,解题的

19、关键是熟练掌握基本知识,属于中考常考题型19、(1)PM=PN,PMPN(2)等腰直角三角形,理由见解析(3) 【解析】(1)由等腰直角三角形的性质易证ACEBCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PMPN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)由(2)可知PMN是等腰直角三角形,PM=BD,推出当BD的值最大时,PM的值最大,PMN的面积最大,推出当B、C、D共线时,BD的最大值=BC+CD=6,由此即可解决问题;【详解】解:(1)PM=PN,PMPN,理由如下:延长AE交BD于O,ACB和ECD是等腰直角三角形,A

20、C=BC,EC=CD,ACB=ECD=90在ACE和BCD中,ACEBCD(SAS),AE=BD,EAC=CBD,EAC+AEC=90,AEC=BEO,CBD+BEO=90,BOE=90,即AEBD,点M、N分别是斜边AB、DE的中点,点P为AD的中点,PM=BD,PN=AE,PM=PM,PMBD,PNAE,AEBD,NPD=EAC,MPA=BDC,EAC+BDC=90,MPA+NPC=90,MPN=90,即PMPN,故答案是:PM=PN,PMPN;(2)如图中,设AE交BC于O,ACB和ECD是等腰直角三角形,AC=BC,EC=CD,ACB=ECD=90,ACB+BCE=ECD+BCE,AC

21、E=BCD,ACEBCD,AE=BD,CAE=CBD,又AOC=BOE,CAE=CBD,BHO=ACO=90,点P、M、N分别为AD、AB、DE的中点,PM=BD,PMBD,PN=AE,PNAE,PM=PN,MGE+BHA=180,MGE=90,MPN=90,PMPN;(3)由(2)可知PMN是等腰直角三角形,PM=BD,当BD的值最大时,PM的值最大,PMN的面积最大,当B、C、D共线时,BD的最大值=BC+CD=6,PM=PN=3,PMN的面积的最大值=33=【点睛】本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确

22、寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题20、(1)每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)产品件数增加后,每次运费最少需要1120元【解析】(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据表中的数量关系列出关于x和y的二元一次方程组,解之即可,(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,根据(1)的结果结合图表列出W关于m的一次函数,再根据“总件数中B产品的件数不得超过A产品件数的2倍”,列出关于m的一元一次不等式,求出m的取值范围,再根据一次函数的增减性即可

23、得到答案【详解】解:(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据题意得:,解得:,答:每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,增加供货量后A产品的数量为(10+m)件,B产品的数量为30+(8-m)=(38-m)件,根据题意得:W=30(10+m)+20(38-m)=10m+1060,由题意得:38-m2(10+m),解得:m6,即6m8,一次函数W随m的增大而增大当m=6时,W最小=1120,答:产品件数增加后,每次运费最少需要1120元【点睛】本题考查

24、了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值21、(1)见解析;(2)1【解析】(1)连接AD,如图,利用圆周角定理得ADB=90,利用切线的性质得ODDF,则根据等角的余角相等得到BDF=ODA,所以OAD=BDF,然后证明COD=OAD得到CAB=2BDF;(2)连接BC交OD于H,如图,利用垂径定理得到ODBC,则CH=BH,于是可判断OH为ABC的中位线,所以OH=1.5,则HD=1,然后证明四边形DHCE为矩形得到CE=DH=1【详解】(1)证明

25、:连接AD,如图,AB为O的直径,ADB90,EF为切线,ODDF,BDFODB90,ODAODB90,BDFODA,OAOD,OADODA,OADBDF,D是弧BC的中点,CODOAD,CAB2BDF;(2)解:连接BC交OD于H,如图,D是弧BC的中点,ODBC,CHBH,OH为ABC的中位线,HD2.51.51,AB为O的直径,ACB90,四边形DHCE为矩形,CEDH1【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了圆周角定理22、【解析】试题分析:(1)求出总的作文篇数,即可得出

26、九年级参赛作文篇数对应的圆心角的度数,求出八年级的作文篇数,补全条形统计图即可;(2)设四篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文,用画树状法即可求得结果.试题解析:(1)2020%=100,九年级参赛作文篇数对应的圆心角=360=126;1002035=45,补全条形统计图如图所示:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文画树状图法:共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,P(七年级特等奖作文被选登在校刊上)= 考点:1.条形统计图;2.扇形统计图;3.列表法与画树状图法.23、DAC=20【解析】根据角平分线的定义可得ABC=2ABE,再根据直角三角形两锐角互余求出BAD,然后根据DAC=BACBAD计算即可得解【详解】BE平分ABC,ABC=2ABE=225=50AD是BC边上的高,BAD=90ABC=9050=40,DAC=BACBAD=6040=20【点睛】本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键24、(1)32;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论