版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1在RtABC中,C90,那么sinB等于()ABCD2下列选项中,能使关于x的一元二次方程ax24x+c=0一定有实数根的是()Aa0Ba=0Cc0Dc=03如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角当点P第2018次碰到矩形的边时,点P的坐
2、标为( )A(1,4)B(7,4)C(6,4)D(8,3)4为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.56.5组别的频率是( )A0.1B0.2C0.3D0.45滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行
3、车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A10分钟B13分钟C15分钟D19分钟6如图,圆弧形拱桥的跨径米,拱高米,则拱桥的半径为( )米ABCD7下列计算正确的是()Aa6a2=a3B(2)1=2C(3x2)2x3=6x6D(3)0=18一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )A20B24C28D309有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开
4、这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是( )ABCD10如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11反比例函数的图象经过点(3,2),则k的值是_当x大于0时,y随x的增大而_(填增大或减小)12同一个圆的内接正方形和正三角形的边心距的比为_13因式分解:_14分解因式:4a3bab_15如图,正方形
5、ABCD的边长为2,点B与原点O重合,与反比例函数y=的图像交于E、F两点,若DEF的面积为,则k的值_ 16如图,在ABC中,DEBC,EFAB若AD=2BD,则的值等于_三、解答题(共8题,共72分)17(8分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.18(8分)已知,如图,在四边形ABCD中,ADB=ACB,延长AD、BC相交于点E求证:ACEBDE;BEDC=ABDE19(8分)如图,一次函数y1kxb(k0)
6、和反比例函数y2(m0)的图象交于点A(1,6),B(a,2)求一次函数与反比例函数的解析式;根据图象直接写出y1y2 时,x的取值范围20(8分)中华文明,源远流长;中华汉字,寓意深广为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率50 x60100.0560 x70300.1570 x8040n80 x90m0.3590 x100500.25根据所给信息,解答下列问题:(1)m= ,n= ;(2)补全频数分布直方图
7、;(3)这200名学生成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?21(8分)如图,在ABC中,BC40,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止求证:ABEACD;若ABBE,求DAE的度数;拓展:若ABD的外心在其内部时,求BDA的取值范围22(10分)已知抛物线y=x24x+c经过点A(2,0)(1)求抛物线的解析式和顶点坐标;(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C若B、C都在抛物线上,求m的值;若点C在第四象限,
8、当AC2的值最小时,求m的值23(12分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图(1)这次调查的市民人数为_人,m_,n_;(2)补全条形统计图;(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度24如图,已知A(a,4),B(4,b)是一次函数与反比例函数图象的两个交点(1)若a1,求反比例函数的解析式及b的值;(2)在(1)的条件下,根据图象直接回答:当x
9、取何值时,反比例函数大于一次函数的值?(3)若ab4,求一次函数的函数解析式参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据锐角三角函数的定义得出sinB等于B的对边除以斜边,即可得出答案【详解】根据在ABC中,C=90,那么sinB= =,故答案选A.【点睛】本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义.2、D【解析】试题分析:根据题意得a1且=,解得且a1观察四个答案,只有c1一定满足条件,故选D考点:根的判别式;一元二次方程的定义3、B【解析】如图,经过6次反弹后动点回到出发点(0,3),20186=3362,当点P第2018次碰
10、到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4)故选C4、B【解析】在5.56.5组别的频数是8,总数是40,=0.1故选B5、D【解析】设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.【详解】设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.86+0.3x=1.88.5+0.3y+0.8(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案为D.【点睛】本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.6、A【解析】试题分析:根据垂径定理的推论,知
11、此圆的圆心在CD所在的直线上,设圆心是O连接OA根据垂径定理和勾股定理求解得AD=6设圆的半径是r, 根据勾股定理, 得r2=36+(r4)2,解得r=6.5考点:垂径定理的应用7、D【解析】解:Aa6a2=a4,故A错误;B(2)1=,故B错误;C(3x2)2x3=6x5,故C错;D(3)0=1,故D正确故选D8、D【解析】试题解析:根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球故选D考点:利用频率估计概率9、B【解析】解:将两把不同的锁分别用A与B表示,三把钥匙分别用A,B与C表示,且A钥匙能打开A锁,B钥匙能打开B锁,画树状图得:共有6种等
12、可能的结果,一次打开锁的有2种情况,一次打开锁的概率为:故选B点睛:本题考查的是用列表法或树状图法求概率注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比10、C【解析】列表得,120-11(1,1)(1,2)(1,0)(1,-1)2(2,1)(2,2)(2,0)(2,-1)0(0,1)(0,2)(0,0)(0,-1)-1(-1,1)(-1,2)(-1,0)(-1,-1)由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为,故选C.考点:用列表法(或树形图
13、法)求概率.二、填空题(本大题共6个小题,每小题3分,共18分)11、6 增大 【解析】反比例函数的图象经过点(3,2),2=,即k=2(3)=6,k0,则y随x的增大而增大.故答案为6;增大.【点睛】本题考查用待定系数法求反函数解析式与反比例函数的性质:(1)当k0时,函数图象在一,三象限,在每个象限内,y随x的增大而减小;(2)当k0时,函数图象在二,四象限,在每个象限内,y随x的增大而增大.12、【解析】先画出同一个圆的内接正方形和内接正三角形,设O的半径为R,求出正方形的边心距和正三角形的边心距,再求出比值即可【详解】设O的半径为r,O的内接正方形ABCD,如图,过O作OQBC于Q,连
14、接OB、OC,即OQ为正方形ABCD的边心距,四边形BACD是正方形,O是正方形ABCD的外接圆,O为正方形ABCD的中心,BOC=90,OQBC,OB=CO,QC=BQ,COQ=BOQ=45,OQ=OCcos45=R;设O的内接正EFG,如图,过O作OHFG于H,连接OG,即OH为正EFG的边心距,正EFG是O的外接圆,OGF=EGF=30,OH=OGsin30=R,OQ:OH=(R):(R)=:1,故答案为:1【点睛】本题考查了正多边形与圆、解直角三角形,等边三角形的性质、正方形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键13、【解析】先提公因式,再用平方差公式分解.【详解
15、】解:【点睛】本题考查因式分解,掌握因式分解方法是关键.14、ab(2a+1)(2a-1)【解析】先提取公因式再用公式法进行因式分解即可.【详解】4a3b- ab= ab(4a2-1)=ab(2a+1)(2a-1)【点睛】此题主要考查因式分解单项式,解题的关键是熟知因式分解的方法.15、1【解析】利用对称性可设出E、F的两点坐标,表示出DEF的面积,可求出k的值【详解】解:设AFa(a2),则F(a,2),E(2,a),FDDE2a,SDEFDFDE,解得a或a(不合题意,舍去),F(,2),把点F(,2)代入解得:k1,故答案为1【点睛】本题主要考查反比例函数与正方形和三角形面积的运用,表示
16、出E和F的坐标是关键16、 【解析】根据平行线分线段成比例定理解答即可【详解】解:DEBC,AD=2BD,EFAB,故答案为.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例三、解答题(共8题,共72分)17、(1);(2)【解析】(1)根据可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率.【详解】解:(1)(1)第二个孩子是女孩的概率=;故答案为;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=.【点睛】本题考查了列表法与树状图法:利用列表
17、法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率18、(1)答案见解析;(2)答案见解析【解析】(1)根据邻补角的定义得到BDE=ACE,即可得到结论;(2)根据相似三角形的性质得到 ,由于E=E,得到ECDEAB,由相似三角形的性质得到 ,等量代换得到,即可得到结论本题解析:【详解】证明:(1)ADB=ACB,BDE=ACE,又E=E,ACEBDE;(2)ACEBDE,E=E,ECDEAB,BEDC=ABDE【点睛】本题考查相似三角形的判定与性质,熟练掌握判定定理是关键.19、(1)y12x4,y2;(2)x1或0 x1【解析
18、】(1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x的取值即可【详解】解:(1)把点A(1,6)代入反比例函数(m0)得:m=16=6,将B(a,2)代入得:,a=1,B(1,2),将A(1,6),B(1,2)代入一次函数y1=kx+b得:,;(2)由函数图象可得:x1或0 x1【点睛】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键20、(1)70,0.2;(2)补图见解析;(3)80 x90;(4)7
19、50人.【解析】分析:(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可详解:(1)本次调查的总人数为100.05=200,则m=2000.35=70,n=40200=0.2,(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在
20、80 x90,这200名学生成绩的中位数会落在80 x90分数段,(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:30000.25=750(人)点睛:本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题也考查了中位数和利用样本估计总体21、(1)证明见解析;(2);拓展:【解析】(1)由题意得BD=CE,得出BE=CD,证出AB=AC,由SAS证明ABEACD即可;(2)由等腰三角形的性质和三角形内角和定理求出BEA=EAB=70,证出AC=CD,由等腰三角形的性质得出ADC=DAC=70
21、,即可得出DAE的度数;拓展:对ABD的外心位置进行推理,即可得出结论【详解】(1)证明:点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,BD=CE,BC-BD=BC-CE,即BE=CD,B=C=40,AB=AC,在ABE和ACD中,ABEACD(SAS);(2)解:B=C=40,AB=BE,BEA=EAB=(180-40)=70,BE=CD,AB=AC,AC=CD,ADC=DAC=(180-40)=70,DAE=180-ADC-BEA=180-70-70=40;拓展:解:若ABD的外心在其内部时,则ABD是锐角三角形BAD=140-BDA90BDA50,又BDA90,50BDA9
22、0【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外心等知识;熟练掌握等腰三角形的性质是解题的关键22、(1)抛物线解析式为y=x24x+12,顶点坐标为(2,16);(2)m=2或m=2;m的值为 【解析】分析:(1)把点A(2,0)代入抛物线y=x24x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)由B(m,n)在抛物线上可得m24m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(m,n),又因C落在抛物线上,可得m2+4m+12=n,即m24m12=n,所以m2+4m+12=m24m12,解方程
23、求得m的值即可;已知点C(m,n)在第四象限,可得m0,n0,即m0,n0,再由抛物线顶点坐标为(2,16),即可得0n16,因为点B在抛物线上,所以m24m+12=n,可得m2+4m=n+12,由A(2,0),C(m,n),可得AC2=(m2)2+(n)2=m2+4m+4+n2=n2n+16=(n)2+,所以当n=时,AC2有最小值,即m24m+12=,解方程求得m的值,再由m0即可确定m的值详解:(1)抛物线y=x24x+c经过点A(2,0),48+c=0,即c=12,抛物线解析式为y=x24x+12=(x+2)2+16,则顶点坐标为(2,16);(2)由B(m,n)在抛物线上可得:m24
24、m+12=n,点B关于原点的对称点为C,C(m,n),C落在抛物线上,m2+4m+12=n,即m24m12=n,解得:m2+4m+12=m24m12,解得:m=2或m=2;点C(m,n)在第四象限,m0,n0,即m0,n0,抛物线顶点坐标为(2,16),0n16,点B在抛物线上,m24m+12=n,m2+4m=n+12,A(2,0),C(m,n),AC2=(m2)2+(n)2=m2+4m+4+n2=n2n+16=(n)2+,当n=时,AC2有最小值,m24m+12=,解得:m=,m0,m=不合题意,舍去,则m的值为点睛:本题是二次函数综合题,第(1)问较为简单,第(2)问根据点B(m,n)关于
25、原点的对称点C(-m,-n)均在二次函数的图象上,代入后即可求出m的值即可;(3)确定出AC2与n之间的函数关系式,利用二次函数的性质求得当n=时,AC2有最小值,在解方程求得m的值即可.23、 (1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度【解析】(1)根据项目B的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A,C的百分比;(2)根据对“社会主义核心价值观”达到“A非常了解”的人数为:32%500=160,补全条形统计图;(3)根据全市总人数乘以A项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A非常了解”的程度的人数【详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会计毕业入职培训计划方案
- 毒品安全防护意识培训课件
- 2026年吕梁职业技术学院单招综合素质笔试备考题库带答案解析
- 海南打卡活动策划方案(3篇)
- 2026年辽宁生态工程职业学院单招综合素质考试备考题库带答案解析
- 衢州婚礼活动策划方案(3篇)
- 梦境介绍活动策划方案(3篇)
- 儿童耳环活动策划方案(3篇)
- 2026年四川大学锦江学院单招综合素质笔试备考题库带答案解析
- 2026年如何建立土木工程的质量管理监督机制
- 河道清淤作业安全组织施工方案
- 2026年1月1日起施行的《兵役登记工作规定》学习与解读
- GB/T 46831-2025塑料聚丙烯(PP)等规指数的测定低分辨率核磁共振波谱法
- 2025侵袭性肺真菌病指南解读
- 苏州工业园区领军创业投资有限公司招聘备考题库新版
- 葡萄种植课件
- 律师事务所保密制度和保密措施
- 粉丝群体特征分析-洞察与解读
- 2025年国家开放大学《公共经济学》期末考试备考试题及答案解析
- NY/T 682-2003畜禽场场区设计技术规范
- GB/T 33725-2017表壳体及其附件耐磨损、划伤和冲击试验
评论
0/150
提交评论