版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡
2、一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m,此时距喷水管的水平距离为 1 m,在如图 2 所示的坐标系中,该喷水管水流喷出的高度(m)与水平距离(m)之间的函数关系式是( )ABCD2计算的值为()A3B9C3D93如图是某几何体的三视图,下列判断正确的是( )A几何体是圆柱体,高为2B几何体是圆锥体,高为2C几何体是圆柱体,半径为2D几何体是圆锥体,直径为24通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A8B8C12D125
3、某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是( )ABCD6如图是某个几何体的三视图,该几何体是( )A圆锥B四棱锥C圆柱D四棱柱7如图,直线 AB 与 MNPQ 的四边所在直线分别交于 A、B、C、D,则图中的相似三角形有( )A4 对 B5 对 C6 对 D7 对8剪纸是我国传统的民间艺术下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )ABCD9如图,ABC 中,AD 是中线,BC=8,B=DAC,则线段 AC 的长为( )A4B4C6D410如图,数轴上的A、B、C、D四点中,与数表示的点最接
4、近的是( )A点AB点BC点CD点D二、填空题(共7小题,每小题3分,满分21分)11如图,AB是O的直径,AB=2,点C在O上,CAB=30,D为 的中点,P是直径AB上一动点,则PC+PD的最小值为_ 12一个多边形的内角和比它的外角和的3倍少180,则这个多边形的边数是_.13已知xy=3,那么的值为_ 14若a3有平方根,则实数a的取值范围是_15若关于x的函数与x轴仅有一个公共点,则实数k的值为 .16如图,在平面直角坐标系中,点A和点C分别在y轴和x轴正半轴上,以OA、OC为边作矩形OABC,双曲线(0)交AB于点E,AEEB=13.则矩形OABC的面积是 _.17点(1,2)关于
5、坐标原点 O 的对称点坐标是_三、解答题(共7小题,满分69分)18(10分)如图1,二次函数yax22ax3a(a0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C求抛物线的函数关系式;如图2,点E是y轴负半轴上一点,连接BE,将OBE绕平面内某一点旋转180,得到PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MFx轴于点F,若线段MF:BF1:2,求点M、N的坐标;点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐
6、标19(5分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.求与之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.20(8分)列方程解应用题:为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了
7、解情况,获得如下信息:信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?21(10分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜假如甲,乙两队每局获胜的机会相同(1)若前四局双方战成2:2,那么甲队最终获胜的概率是_;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?22(10分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成
8、为焦点为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A非常了解;B比较了解;C基本了解;D不了解根据调查统计结果,绘制了不完整的三种统计图表对雾霾了解程度的统计表:对雾霾的了解程度百分比A非常了解5%B比较了解mC基本了解45%D不了解n请结合统计图表,回答下列问题(1)本次参与调查的学生共有 人,m= ,n= ;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是 度;(3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒
9、乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球若摸出的两个球上的数字和为奇数,则小明去;否则小刚去请用树状图或列表法说明这个游戏规则是否公平23(12分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30,然后向山脚直行60米到达C处,再测得山顶A的仰角为45,求山高AD的长度(测角仪高度忽略不计)24(14分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人(1)求两次传球后,球恰在B手中的概率;(2)
10、求三次传球后,球恰在A手中的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据图象可设二次函数的顶点式,再将点(0,0)代入即可【详解】解:根据图象,设函数解析式为由图象可知,顶点为(1,3),将点(0,0)代入得解得故答案为:D【点睛】本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式2、B【解析】(9)2=81,9.故选B.3、A【解析】试题解析:根据主视图和左视图为矩形是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱,再根据左视图的高度得出圆柱体的高为2;故选A考点:由三视图判断几何体4、D【解析】根据前三个图形中数字之间
11、的关系找出运算规律,再代入数据即可求出第四个图形中的y值【详解】251(2)=1,18(3)4=20,4(7)5(3)=13,y=036(2)=1故选D【点睛】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键5、C【解析】本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时实际用时1【详解】解:原计划用时为:,实际用时为:所列方程为:,故选C【点睛】本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键6、B【解析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状【详解】解:根据主视图和左视图为矩形判断出是
12、柱体,根据俯视图是长方形可判断出这个几何体应该是四棱柱故选B.【点睛】本题考查了由三视图找到几何体图形,属于简单题,熟悉三视图概念是解题关键.7、C【解析】由题意,AQNP,MNBQ,ACMDCN,CDNBDP,BPDBQA,ACMABQ,DCNABQ,ACMDBP,所以图中共有六对相似三角形故选C8、A【解析】试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误故选A考点:中心对称
13、图形;轴对称图形9、B【解析】由已知条件可得,可得出,可求出AC的长【详解】解:由题意得:B=DAC,ACB=ACD,所以,根据“相似三角形对应边成比例”,得,又AD 是中线,BC=8,得DC=4,代入可得AC=,故选B.【点睛】本题主要考查相似三角形的判定与性质灵活运用相似的性质可得出解答10、B【解析】,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】, ,因为0.2680.7321.268,所以 表示的点与点B最接近,故选B.二、填空题(共7小题,每小题3分,满分21分)11、【解析】作出D关于AB的对称点D,则PC+PD的最小值就是CD的长度,在COD中根据
14、边角关系即可求解.【详解】解:如图:作出D关于AB的对称点D,连接OC,OD,CD.又点C在O上,CAB=30,D为弧BC的中点,即,BAD=CAB=15.CAD=45.COD=90.则COD是等腰直角三角形.OC=OD=AB=1,故答案为:.【点睛】本题考查了轴对称-最短路线问题,勾股定理,垂径定理,正确作出辅助线是解题的关键.12、7【解析】根据多边形内角和公式得:(n-2) .得: 13、2 【解析】分析:先化简,再分同正或同负两种情况作答详解:因为xy=3,所以x、y同号,于是原式=,当x0,y0时,原式=2;当x0,y0时,原式=2故原式=2.点睛:本题考查的是二次根式的化简求值,能
15、够正确的判断出化简过程中被开方数底数的符号是解答此题的关键.14、a1【解析】根据平方根的定义列出不等式计算即可.【详解】根据题意,得 解得: 故答案为【点睛】考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.15、0或1。【解析】由于没有交待是二次函数,故应分两种情况:当k=0时,函数是一次函数,与x轴仅有一个公共点。当k0时,函数是二次函数,若函数与x轴仅有一个公共点,则有两个相等的实数根,即。综上所述,若关于x的函数与x轴仅有一个公共点,则实数k的值为0或1。16、1【解析】根据反比例函数图象上点的坐标特征设E点坐标为(t,),则利用AE:EB=1:3,
16、B点坐标可表示为(4t,),然后根据矩形面积公式计算【详解】设E点坐标为(t,),AE:EB=1:3,B点坐标为(4t,),矩形OABC的面积=4t=1故答案是:1【点睛】考查了反比例函数y=(k0)系数k的几何意义:从反比例函数y=(k0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|17、(-1,2)【解析】根据两个点关于原点对称时,它们的坐标符号相反可得答案【详解】A(1,-2)关于原点O的对称点的坐标是(-1,2),故答案为:(-1,2)【点睛】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律三、解答题(共7小题,满分69分)18、(1)(1,
17、4a);(2)y=x2+2x+3;M(,)、N(,);点Q的坐标为(1,4+2)或(1,42)【解析】分析: (1)将二次函数的解析式进行配方即可得到顶点D的坐标(2)以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出ACD是个直角三角形,且ACD90,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值将OBE绕平面内某一点旋转180得到PMN,说明了PM正好和x轴平行,且PMOB1,所以求M、N的坐标关键是求出点M的坐标;首先根据的函数解析式设出M点的坐标,然后根据题干条件:BF2MF作为等量关系
18、进行解答即可设Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出CDQ45,那么QGD为等腰直角三角形,即QD 2QG 2QB ,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标详解:(1)y=ax22ax3a=a(x1)24a,D(1,4a)(2)以AD为直径的圆经过点C,ACD为直角三角形,且ACD=90;由y=ax22ax3a=a(x3)(x+1)知,A(3,0)、B(1,0)、C(0,3a),则:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,
19、化简,得:a2=1,由a0,得:a=1,a=1,抛物线的解析式:y=x2+2x+3,D(1,4)将OBE绕平面内某一点旋转180得到PMN,PMx轴,且PM=OB=1;设M(x,x2+2x+3),则OF=x,MF=x2+2x+3,BF=OF+OB=x+1;BF=2MF,x+1=2(x2+2x+3),化简,得:2x23x5=0解得:x1=1(舍去)、x2=.M(,)、N(,)设Q与直线CD的切点为G,连接QG,过C作CHQD于H,如下图:C(0,3)、D(1,4),CH=DH=1,即CHD是等腰直角三角形,QGD也是等腰直角三角形,即:QD2=2QG2;设Q(1,b),则QD=4b,QG2=QB
20、2=b2+4;得:(4b)2=2(b2+4),化简,得:b2+8b8=0,解得:b=42;即点Q的坐标为(1,)或(1,)点睛: 此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD和Q半径间的数量关系是解题题目的关键19、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润
21、;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围【详解】(1)由题意得: 故y与x之间的函数关系式为:y=-10 x+700,(2)由题意,得-10 x+700240,解得x46,设利润为w=(x-30)y=(x-30)(-10 x+700),w=-10 x2+1000 x-21000=-10(x-50)2+4000,-100,x50时,w随x的增大而增大,x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10 x2+1000 x-2
22、1000-150=3600,-10(x-50)2=-250,x-50=5,x1=55,x2=45,如图所示,由图象得:当45x55时,捐款后每天剩余利润不低于3600元【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点20、甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏【解析】设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可【详解】解:设甲广告公司
23、每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏根据题意得: 1200 x-12001.2x=10, 解得:x=1经检验:x=1是原方程的解且符合实际问题的意义1.2x=1.21=2答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏【点睛】此题考查了分式方程的应用,找出等量关系为两广告公司的工作时间的差为10天是解题的关键21、(1)12;(2)78【解析】分析:(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求详解:(1)甲队最终获胜的概率是12;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=78点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率22、解:(1)400;15%;35%(2)1(3)D等级的人数为:40035%=140,补全条形统计图如图所示:(4)列树状图得:从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,小明参加的概率为:P(数字之和为奇数);小刚参加的概率为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年山东省经济管理干部学院马克思主义基本原理概论期末考试笔试真题汇编
- 2024年广西政法管理干部学院马克思主义基本原理概论期末考试笔试题库
- 《基于体验式学习的思政课实践教学基地课程创新研究》教学研究课题报告
- 初中AI课程中神经网络基础的翻转课堂教学模式创新研究课题报告教学研究课题报告
- 2025年智能安防巡逻系统集成在智慧社区的社区安全创新应用报告
- 高中语文任务群教学中的教学效果反馈与改进研究教学研究课题报告
- 2025年赣州远恒佳职业学院马克思主义基本原理概论期末考试模拟试卷
- 2025年常德职业技术学院马克思主义基本原理概论期末考试笔试真题汇编
- 2024年中国地质大学(武汉)马克思主义基本原理概论期末考试笔试题库
- 2024年黔东南理工职业学院马克思主义基本原理概论期末考试真题汇编
- 具有较大危险因素的生产经营场所、设备和设施的安全管理制度
- JT-T-883-2014营运车辆行驶危险预警系统技术要求和试验方法
- 适用于新高考新教材天津专版2024届高考英语一轮总复习写作专项提升Step3变魔句-提升描写逼真情境能力课件外研版
- 元宇宙技术与应用智慧树知到期末考试答案章节答案2024年中国科学技术大学
- 竹雕的雕刻工艺
- 社交媒体网络虚假信息传播的影响和治理
- 自考《影视编导》03513复习备考试题库(含答案)
- 消防设计专篇
- 新人教版高中生物必修一全册课时练(同步练习)
- 「梦回唐宋」-边塞诗(可编辑版)
- 九年级道德与法治(上)选择题易错50练
评论
0/150
提交评论