版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1把方程的左边配方后可得方程( )ABCD22018年某市初中学业水平实验操作考试,要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强
2、都抽到物理学科的概率是( )ABCD3对于一个圆柱的三种视图,小明同学求出其中两种视图的面积分别为6和10,则该圆柱第三种视图的面积为( )A6B10C4D6或104若函数y(m23m2)x|m|3是反比例函数,则m的值是( )A1B2C2D25如图,点B,C,D在O上,若BCD30,则BOD的度数是( )A75B70C65D606在RtABC中,C=90,AC=3,BC=4,那么cosA的值是( )ABCD7如图,为的直径,为上的两点.若,则的度数是( )ABCD8化简的结果是A-9B-3C9D39如图,为的直径,弦于点,则的半径为( )A5B8C3D1010如图,点从菱形的顶点出发,沿以的
3、速度匀速运动到点,下图是点运动时,的面积随时间变化的关系图象是( )ABCD二、填空题(每小题3分,共24分)11因式分解:_.12点A(1,1)关于原点对称的点的坐标是_13方程(x1)2=4的解为_14若函数是二次函数,则的值为_15已知ABC与DEF相似,且ABC与DEF的相似比为2:3,若DEF的面积为36,则ABC的面积等于_16如图,在平面直角坐标系xOy中,点A在函数y(x0)的图象上,ACx轴于点C,连接OA,则OAC面积为_17从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数, 则这个两位数能被3整除的概率是_18如图是二次函数yax2bxc的图象,由图象可知,不
4、等式ax2bxc0的解集是_三、解答题(共66分)19(10分)在平面直角坐标系中,已知,.(1)如图1,求的值.(2)把绕着点顺时针旋转,点、旋转后对应的点分别为、.当恰好落在的延长线上时,如图2,求出点、的坐标.若点是的中点,点是线段上的动点,如图3,在旋转过程中,请直接写出线段长的取值范围.20(6分)如图,在平行四边形ABCD中,过点A作AEBC,垂足为E,连接DE,F为线段DE上一点,且AFEB,(1)求证:ADFDEC(2)若AB4,AD3,AE3,求AF的长.21(6分)当今,越来越多的青少年在观看影片流浪地球后,更加喜欢同名科幻小说,该小说销量也急剧上升书店为满足广大顾客需求,
5、订购该科幻小说若干本,每本进价为20元根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元(1)直接写出书店销售该科幻小说时每天的销售量(本)与销售单价(元)之间的函数关系式及自变量的取值范围(2)书店决定每销售1本该科幻小说,就捐赠元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求的值22(8分)在四边形ABCD中,对角线AC、BD相交于点O,设锐角DOC,将DOC按逆时针方向旋转得到DOC(0旋转角90)连接AC、BD,AC与BD相交于点M(1)当四边形ABCD是矩形时,如图1,请猜
6、想AC与BD的数量关系以及AMB与的大小关系,并证明你的猜想;(2)当四边形ABCD是平行四边形时,如图2,已知ACkBD,请猜想此时AC与BD的数量关系以及AMB与的大小关系,并证明你的猜想;(3)当四边形ABCD是等腰梯形时,如图3,ADBC,此时(1)AC与BD的数量关系是否成立?AMB与的大小关系是否成立?不必证明,直接写出结论23(8分)在平面直角坐标系xOy中,已知抛物线G:yax22ax+4(a0)(1)当a1时,抛物线G的对称轴为x ;若在抛物线G上有两点(2,y1),(m,y2),且y2y1,则m的取值范围是 ;(2)抛物线G的对称轴与x轴交于点M,点M与点A关于y轴对称,将
7、点M向右平移3个单位得到点B,若抛物线G与线段AB恰有一个公共点,结合图象,求a的取值范围24(8分)如图,是 ABCD的边延长线上一点,连接,交于点求证:CDF25(10分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:x(元)152030y(袋)252010若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润
8、最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?26(10分)根据要求完成下列题目:(1)图中有 块小正方体;(2)请在下面方格纸中分别画出它的主视图,左视图和俯视图.参考答案一、选择题(每小题3分,共30分)1、A【分析】首先把常数项移项后,再在左右两边同时加上一次项系数的一半的平方,继而可求得答案.【详解】,.故选:.【点睛】此题考查了配方法解一元二次方程的知识,此题比较简单,注意掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.2、D【分析】直接利用树状图法列举出所有的可能,进而利用概率公式求出答案【详
9、解】解:如图所示:一共有9种可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是:,故选D.【点睛】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键3、D【分析】一个圆柱的三视图是圆和长方形,所以另外一种视图也是同样的长方形.【详解】一个圆柱的三视图是圆和长方形,所以另外一种视图也是同样的长方形,如果视图是长方形的面积是6,另外一种视图的面积也是6,如果视图是长方形的面积是10,另外一种视图的面积也是10.故选:D【点睛】考核知识点:三视图.理解圆柱体三视图特点是关键.4、B【解析】根据反比例函数的定义,列出方程求解即可【详解】解:由题意得,|m|-3=-1,解得m=1,当m=
10、1时,m1-3m+1=11-31+1=2,当m=-1时,m1-3m+1=(-1)1-3(-1)+1=4+6+1=11,m的值是-1故选:B【点睛】本题考查了反比例函数的定义,熟记一般式y=(k2)是解题的关键,要注意比例系数不等于25、D【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得答案【详解】BCD30,BOD2BCD23060故选:D【点睛】本题考查了圆的角度问题,掌握圆周角定理是解题的关键6、B【解析】根据勾股定理,可得AB的长,根据锐角的余弦等于邻边比斜边,可得答案【详解】解:在RtABC中,C=90,AC=3,BC=4,由勾股定理,得AB=5
11、 cosA= 故选:B【点睛】本题考查锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边7、B【分析】先连接OC,根据三条边都相等可证明OCB是等边三角形,再利用圆周角定理即可求出角度.【详解】解:如图,连接OCAB=2,BC=1,OB=OC=BC=1,OCB是等边三角形,COB=60,CDB=COB=30.故选:B【点睛】本题考查圆周角定理,等边三角形的判定及性质等知识,作半径是圆中常用到的辅助线需熟练掌握.8、B【分析】根据二次根式的性质即可化简.【详解】=-3故选B.【点睛】此题主要考查二次根式的化简,解题的关键实数的性质.9、A【分析】作辅助
12、线,连接OA,根据垂径定理得出AE=BE=4,设圆的半径为r,再利用勾股定理求解即可.【详解】解:如图,连接OA,设圆的半径为r,则OE=r-2,弦,AE=BE=4,由勾股定理得出:,解得:r=5,故答案为:A.【点睛】本题考查的知识点主要是垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断或解答.10、A【分析】运用动点函数进行分段分析,当点P在AD上和在BD上时,结合图象得出符合要求的解析式【详解】当点P在AD上时,此时BC是定值,BC边的高是定值,则PBC的面积y是定值;当点P在BD上时,此时BC是定值,BC边的高与运动时间x成正比例的关系,则
13、PBC的面积y与运动时间x是一次函数,并且PBC的面积y与运动时间x之间是减函数,y1所以只有A符合要求故选:A【点睛】此题主要考查了动点函数的应用,注意将函数分段分析得出解析式是解决问题的关键,有一定难度二、填空题(每小题3分,共24分)11、【分析】先提取公因式ab,再利用平方差公式分解即可得答案.【详解】4a3b3-ab=ab(a2b2-1)=ab(ab+1)(ab-1)故答案为:ab(ab+1)(ab-1)【点睛】本题考查了因式分解,因式分解的方法有提取公因式法、公式法、十字相乘法、分组分解法等,根据题目的特点,灵活运用适当的方法是解题关键.12、(1,1)【分析】直接利用关于原点对称
14、点的性质得出答案【详解】解:点A(1,1)关于原点对称的点的坐标是:(1,1)故答案为:(1,1)【点睛】此题主要考查了关于原点对称的点的坐标,正确记忆横纵坐标的符号关系是解题关键13、x1=3,x2=1【解析】试题解析:(x1)2=4,即x1=2,所以x1=3,x2=1故答案为x1=3,x2=114、-1【分析】直接利用二次函数的定义分析得出答案【详解】解:函数是二次函数,m1+m=1,且m-10,m=1故答案为-1【点睛】此题主要考查了二次函数的定义,正确把握二次函数的次数与系数的值是解题关键15、16【分析】利用相似三角形面积比等于相似比的平方求解即可.【详解】解:ABC与DEF相似,且
15、ABC与DEF的相似比为2:3,DEF 的面积为36,ABC的面积等于16,故答案为16.【点睛】本题考查了相似三角形的性质,熟记相似三角形的面积比等于相似比的平方是解决本题的关键.16、1【分析】根据反比例函数比例系数k的几何意义可得SOAC21,再相加即可【详解】解:函数y(x0)的图象经过点A,ACx轴于点C,SOAC21,故答案为1【点睛】本题考查了反比例函数比例系数k的几何意义,掌握过反比例函数图象上的点向x轴或y轴作垂线,这一点和垂足、原点组成的三角形的面积的计算方法是解本题的关键17、【分析】从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,得出组成的两位数总个数及能
16、被3整除的数的个数,求概率【详解】从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,共有6种情况,它们分别是56、57、65、67、75、76,其中能被3整除的有57、75两种,组成两位数能被3整除的概率为:故答案为:【点睛】本题考查的是直接用概率公式求概率问题,找对符合条件的个数和总个数是关键18、x1或x1【分析】根据二次函数的对称性求出与x轴的另一个交点坐标,然后根据函数图象写出x轴上方部分的x的取值范围即可【详解】解:由对称性得:抛物线与x轴的另一个交点为(-1,0),不等式ax2bxc0的解集是:x1或x1,故答案为:x1或x1【点睛】本题考查了二次函数与不等式组,二次函
17、数的性质,此类题目,利用数形结合的思想求解是解题的关键三、解答题(共66分)19、(1);(2),;(3)【解析】(1)作AHOB,根据正弦的定义即可求解;(2)作MCOB,先求出直线AB解析式,根据等腰三角形的性质及三角函数的定义求出M点坐标,根据MNOB,求出N点坐标;(3)由于点C是定点,点P随ABO旋转时的运动轨迹是以B为圆心,BP长为半径的圆,故根据点和圆的位置关系可知,当点P在线段OB上时,CP=BP-BC最短;当点P在线段OB延长线上时,CP=BP+BC最长又因为BP的长因点D运动而改变,可先求BP长度的范围由垂线段最短可知,当BP垂直MN时,BP最短,求得的BP代入CP=BP-
18、BC求CP的最小值;由于BMBN,所以点P与M重合时,BP=BM最长,代入CP=BP+BC求CP的最大值【详解】(1)作AHOB,.H(3,5)AH=3,AH=(2)由(1)得A(3,4),又求得直线AB的解析式为:y=旋转,MB=OB=6,作MCOB,AO=BO,AOB=ABOMC=MBsinABO=6=即M点的纵坐标为,代入直线AB得x=,NMB=AOB=ABOMNOB,又MN=AB=5,则+5=(3)连接BP点D为线段OA上的动点,OA的对应边为MN点P为线段MN上的动点点P的运动轨迹是以B为圆心,BP长为半径的圆C在OB上,且CB=OB=3当点P在线段OB上时,CP=BPBC最短;当点
19、P在线段OB延长线上时,CP=BP+BC最长如图3,当BPMN时,BP最短SNBM=SABO,MN=OA=5MNBP=OByABP= =CP最小值=3=当点P与M重合时,BP最大,BP=BM=OB=6CP最大值=6+3=9线段CP长的取值范围为.【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法的运用、旋转的性质、三角函数的应用.20、(1)见解析(2)AF=2【详解】(1)证明:四边形ABCD是平行四边形ADBC ABCDADF=CED B+C=180AFE+AFD=,AFE=BAFD=CADFDEC(2)解:四边形ABCD是平行四边形ADBC CD=AB=4又AEBC AE
20、AD在RtADE中,DE= ADFDECAF=21、(1);(1)【解析】(1)根据题意列函数关系式即可;(1)设每天扣除捐赠后可获得利润为w元根据题意得到w=(x-10-a)(-10 x+500)=-10 x1+(10a+700)x-500a-10000(30 x38)求得对称轴为x35+a,且0a6,则3035+a38,则当时,取得最大值,解方程得到a1=1,a1=58,于是得到a=1【详解】解:(1)根据题意得,;(1)设每天扣除捐赠后可获得利润为元对称轴为x35+a,且0a6,则3035+a 38,则当时,取得最大值,(不合题意舍去),【点睛】本题考查了二次函数的应用,难度较大,最大销
21、售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型22、(1)BDAC,AMB,见解析;(2)ACkBD,AMB,见解析;(3)ACBD成立,AMB不成立【分析】(1)通过证明BODAOC得到BDAC,OBDOAC,根据三角形内角和定理求出AMBAOBCOD;(2)依据(1)的思路证明BODAOC,得到ACkBD,设BD与OA相交于点N,由相似证得BNOANM,再根据三角形内角和求出AMB;(3)先利用等腰梯形的性质OA=OD,OB=OC,再利用旋转证得,由此证明,得到BDAC及对应角的等量关系,由此证得AMB不成立【详解】解:(1)ACBD,AMB,证明:在矩形AB
22、CD中,ACBD,OAOCAC,OBODBD,OAOCOBOD,又ODOD,OCOC,OBODOAOC,DODCOC,180DOD180COC,BODAOC,BODAOC,BDAC,OBDOAC,设BD与OA相交于点N,BNOANM,180OACANM180OBDBNO,即AMBAOBCOD,综上所述,BDAC,AMB,(2)ACkBD,AMB,证明:在平行四边形ABCD中,OBOD,OAOC,又ODOD,OCOC,OCOA,ODOB,DODCOC,180DOD180COC,BODAOC,BODAOC,BD:ACOB:OABD:AC,ACkBD,ACkBD,BODAOC,设BD与OA相交于点N
23、,BNOANM,180OACANM180OBDBNO,即AMBAOB,综上所述,ACkBD,AMB,(3)在等腰梯形ABCD中,OA=OD,OB=OC,由旋转得: ,即,ACBD, ,设BD与OA相交于点N,ANB=+AMB=,ACBD成立,AMB不成立【点睛】此题是变化类图形问题,根据变化的图形找到共性证明三角形全等,由此得到对应边相等,对应角相等,在(3)中,对应角的位置发生变化,故而角度值发生了变化.23、(1)1;m2或m0;(2)a或a1【分析】(1)当a1时,根据二次函数一般式对称轴公式,即可求得抛物线G的对称轴;根据抛物线的对称性求得关于对称轴的对称点为,再利用二次函数图像的增减性即可求得答案;(2)根据平移的性质得出、,由题意根据函数图象分三种情况进行讨论,即可得解【详解】解:(1)当a1时,抛物线G:yax22ax+1(a0)为:抛物线G的对称轴为; 画出函数图象:在抛物线G上有两点(2,y1),(m,y2),且y2y1,当时,随的增大而增大,此时有;当时,随的增大而减小,抛物线G上点关于对称轴的对称点为,此时有m的取值范围是或;(2)抛物线G:yax22ax+1(a0的对称轴为x1,且对称轴与x轴交于点M点M的坐标为(1,0)点M与点A关于y轴对称点A的坐标为(1,0)点M右移3个单位得到点B点B的坐标为(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【初中 生物】细胞分化形成组织课件-2025-2026学年北师大版生物七年级上册
- 2026年全国消防安全知识竞赛试题库及答案
- 2026年党员干部党纪政纪条规知识竞赛测试题库及答案(完整版)
- 安全生产事故隐患排查治理工作制度(7篇)
- 成本预算执行与绩效挂钩策略
- 成本标杆的科室应用策略
- 云南省昭通市巧家县2023-2024学年七年级上学期期末英语试题(含答案)
- 温湿度记录仪设备报废回收协议
- POS机收单合作协议
- API接口调用对账协议
- 24春国家开放大学《投资学》形考作业册1-4参考答案
- 大锁孙天宇小品《时间都去哪了》台词剧本完整版-一年一度喜剧大赛
- 2024年重庆市优质企业梯度培育政策解读学习培训课件资料(专精特新 专精特新小巨人中小企业 注意事项)
- 粮油产品授权书
- 加氢裂化装置技术问答
- 广东省东莞市东华中学2023-2024学年数学九上期末考试试题含解析
- 抑郁病诊断证明书
- 病理生理学复习重点缩印
- 第五届全国辅导员职业能力大赛案例分析与谈心谈话试题(附答案)
- 《大数的认识》复习教学设计
- GB/T 3513-2018硫化橡胶与单根钢丝粘合力的测定抽出法
评论
0/150
提交评论