2022年江苏省无锡锡山区四校联考数学九上期末调研模拟试题含解析_第1页
2022年江苏省无锡锡山区四校联考数学九上期末调研模拟试题含解析_第2页
2022年江苏省无锡锡山区四校联考数学九上期末调研模拟试题含解析_第3页
2022年江苏省无锡锡山区四校联考数学九上期末调研模拟试题含解析_第4页
2022年江苏省无锡锡山区四校联考数学九上期末调研模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1若x2是关于x的一元二次方程x22a0的一个根,则a的值为()A3B2C4D52铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式为yx2x.则该运动员此次掷铅

2、球的成绩是()A6 mB12 mC8 mD10 m3已知函数yax2+bx+c(a0)的图象如图,则函数yax+b与y的图象大致为( )ABCD4如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为()A(,1)B(1,)C(,1)D(,1)5随机抛掷一枚质地均匀的骰子一次,下列事件中,概率最大的是( )A朝上一面的数字恰好是6B朝上一面的数字是2的整数倍C朝上一面的数字是3的整数倍D朝上一面的数字不小于26如图,在ABC中,ADBC交BC于点D,ADBD,若AB,tanC,则BC( )A8BC7D7将一元二次方程化成一般式后,二次项系数和一次项系数分别为

3、( )A4,3B4,7C4,-3D8如图,在O中,AB为直径,圆周角ACD=20,则BAD等于()A20B40C70D809已知关于的一元二次方程两实数根为、,则( )A3B3C1D110二次函数与坐标轴的交点个数是()A0个B1个C2个D3个二、填空题(每小题3分,共24分)11设x1、x2是关于x的方程x23x50的两个根,则x1x2x1x2_12若点与关于原点对称,则的值是_.13如图是二次函数y=ax2+bx+c的部分图象,由图象可知方程ax2+bx+c=0的解是_14已知一段公路的坡度为1:20,沿着这条公路前进,若上升的高度为2m,则前进了_米15如图,ABC中,ACB90,A30

4、,BC1,CD是ABC的中线,E是AC上一动点,将AED沿ED折叠,点A落在点F处,EF线段CD交于点G,若CEG是直角三角形,则CE_16将抛物线向左平移2个单位后所得到的抛物线为 _17如图,在O中,AOB=60,则ACB=_度18将二次函数yx26x+8化成ya(x+m)2+k的形式是_三、解答题(共66分)19(10分)如图,在坐标系中,抛物线经过点和,与轴交于点.直线.抛物线的解析式为 .直线的解析式为 ;若直线与抛物线只有一个公共点,求直线的解析式;设抛物线的顶点关于轴的对称点为,点是抛物线对称轴上一动点,如果直线与抛物线在轴上方的部分形成了封闭图形(记为图形).请结合函数的图象,

5、直接写出点的纵坐标的取值范围.20(6分)阅读理解,我们已经学习了点和圆、直线和圆的位置关系以及各种位置关系的数量表示,如下表:类似于研究点和圆、直线和圆的位置关系,我们也可以用两圆的半径和两圆的圆心距(两圆圆心的距离)来刻画两圆的位置关系如果两圆的半径分别为和(r1r2),圆心距为d,请你通过画图,并利用d与和之间的数量关系探索两圆的位置关系图形表示(圆和圆的位置关系)数量表示(圆心距d与两圆的半径、的数量关系) 21(6分)解方程:(x+3)(x6)122(8分)如图,是的直径,点在上,平分,是的切线,与相交于点,与相交于点,连接 (1)求证:;(2)若,求的长23(8分)如图,已知抛物线

6、与轴交于A(1,0)、B(3,0)两点,与y轴交于点C,直线经过点C,与轴交于点D(1)求该抛物线的函数关系式;(2)点P是(1)中的抛物线上的一个动点,设点P的横坐标为t(0t3)求PCD的面积的最大值;是否存在点P,使得PCD是以CD为直角边的直角三角形?若存在,求点P的坐标;若不存在,请说明理由24(8分)如图,某中学九年级“智慧之星”数学社团的成员利用周末开展课外实践活动,他们要测量中心公园内的人工湖中的两个小岛,间的距离.借助人工湖旁的小山,某同学从山顶处测得观看湖中小岛的俯角为,观看湖中小岛的俯角为.已知小山的高为180米,求小岛,间的距离.25(10分)据九章算术记载:“今有山居

7、木西,不知其高.山去五十三里,木高九丈西尺,人立木东三里,望木末适与山峰斜平.人目高七尺.问山高几何?”大意如下:如图,今有山位于树的西面.山高为未知数,山与树相距里,树高丈尺,人站在离树里的处,观察到树梢恰好与山峰处在同一斜线上,人眼离地尺,问山AB的高约为多少丈?(丈尺,结果精确到个位)26(10分)如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);(2)求两次摸出的牌面图形既是中心对称图形又是轴对称图形的概率参考答

8、案一、选择题(每小题3分,共30分)1、A【分析】把x2代入已知方程,列出关于a的新方程,通过解新方程可以求得a的值【详解】x2是关于x的一元二次方程x22a0的一个根,222a0,解得 a1即a的值是1故选:A【点睛】本题考查了一元二次方程的解的定义能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根2、D【分析】依题意,该二次函数与x轴的交点的x值为所求即在抛物线解析式中令y=0,求x的正数值【详解】把y=0代入y=-x1+x+得:-x1+x+=0,解之得:x1=2,x1=-1又x0,解得

9、x=2故选D3、C【分析】直接利用二次函数、一次函数、反比例函数的性质分析得出答案【详解】二次函数开口向下,a0,二次函数对称轴在y轴右侧,a,b异号,b0,抛物线与y轴交在负半轴,c0,yax+b图象经过第一、二、四象限,y的图象分布在第二、四象限,故选:C【点睛】本题考查了函数的性质以及图象问题,掌握二次函数、一次函数、反比例函数的性质是解题的关键4、A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点如图:过点A作ADx轴于D,过点C作CEx轴于E,根据同角的余角相等求出OAD=COE,再利用“角角边”证明AOD和OCE全等,根据全等三角形对应边相等可得OE=AD,C

10、E=OD,然后根据点C在第二象限写出坐标即可点C的坐标为(-,1)故选A考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质5、D【解析】根据概率公式,逐一求出各选项事件发生的概率,最后比较大小即可【详解】解:A 朝上一面的数字恰好是6的概率为:16=;B 朝上一面的数字是2的整数倍可以是2、4、6,有3种可能,故概率为:36=;C 朝上一面的数字是3的整数倍可以是3、6,有2种可能,故概率为:26=;D 朝上一面的数字不小于2可以是2、3、4、5、6,有5种可能,故概率为:56=D选项事件发生的概率最大故选D【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键6、C

11、【分析】证出ABD是等腰直角三角形,得出ADBDAB4,由三角函数定义求出CD3,即可得出答案【详解】解:交于点,是等腰直角三角形,;故选:【点睛】本题考查了解直角三角形、等腰直角三角形的性质以及三角函数定义;熟练掌握等腰直角三角形的性质和三角函数定义是解题的关键7、C【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a0)特别要注意a0的条件这是在做题过程中容易忽视的知识点在一般形式中ax2叫二次项,bx叫一次项,c是常数项其中a,b,c分别叫二次项系数,一次项系数,常数项【详解】解:化成一元二次方程一般形式是4x2-1x+7=0,则它的二次项系数是4,一次项系数是-

12、1故选:C【点睛】本题主要考查了一元二次方程的一般形式,关键把握要确定一次项系数,首先要把方程化成一般形式8、C【分析】连接OD,根据AOD=2ACD,求出AOD,利用等腰三角形的性质即可解决问题【详解】连接ODACD=20,AOD=2ACD=40OA=OD,BAD=ADO=(18040)=70故选C【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型9、A【解析】根据根与系数的关系求解即可.【详解】关于的一元二次方程两实数根为、,.故选:A【点睛】本题考查了根与系数的关系,二次项系数为1,常用以下关系:、是方程的两根

13、时,10、B【分析】先计算根的判别式的值,然后根据b24ac决定抛物线与x轴的交点个数进行判断【详解】2241240,二次函数yx22x2与x轴没有交点,与y轴有一个交点二次函数yx22x2与坐标轴的交点个数是1个,故选:B【点睛】本题考查了抛物线与x轴的交点:求二次函数yax2bxc(a,b,c是常数,a0)与x轴的交点坐标,令y0,即ax2bxc0,解关于x的一元二次方程即可求得交点横坐标二次函数yax2bxc(a,b,c是常数,a0)的交点与一元二次方程ax2bxc0根之间的关系:b24ac决定抛物线与x轴的交点个数;b24ac0时,抛物线与x轴有2个交点;b24ac0时,抛物线与x轴有

14、1个交点;b24ac0时,抛物线与x轴没有交点二、填空题(每小题3分,共24分)11、1【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论【详解】解:x1,x1是关于 x 的方程x13x50的两个根,根据根与系数的关系,得,x1+x1=-3,x1x1=-5,则 x1+x1-x1x1=-3-(-5)=1,故答案为1【点睛】本题考查了一元二次方程的根与系数的关系,求出x1+x1=-3,x1x1=-5是解题的关键12、1【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反.【详解】点与关于原点对称故填:1.【点睛】本题主要考查了关于原点对称的点的坐标特点

15、,熟练掌握点的变化规律是关键13、,【详解】解:由图象可知对称轴x=2,与x轴的一个交点横坐标是5,它到直线x=2的距离是3个单位长度,所以另外一个交点横坐标是-1所以,故答案是:,【点睛】考查抛物线与x轴的交点,抛物线与x轴两个交点的横坐标的和除以2后等于对称轴14、.【分析】利用垂直高度,求出水平宽度,利用勾股定理求解即可【详解】解:如图所示:根据题意,在RtABC中,BC=2m,,解得AC=40m,根据勾股定理m.故答案为:.【点睛】此题主要考查解直角三角形的应用,勾股定理.理解坡度坡角的定义,由勾股定理得出AB是解决问题的关键15、或【分析】分两种情形:如图1中,当时如图2中,当时,分

16、别求解即可【详解】解:在中,若CEG是直角三角形,有两种情况:I如图1中,当时,作于则,在中,II如图2中,当时,此时点与点重合,综上所述,的长为或故答案为:或【点睛】本题考查了翻折变换,直角三角形性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型16、【分析】根据平移规律“左加右减,上加下减”即可写出表达式.【详解】根据函数的图形平移规律可知:抛物线向左平移2个单位后所得到的抛物线为.【点睛】本题考查了平移的知识,掌握函数的图形平移规律是解题的关键.17、1【详解】解:同弧所对圆心角是圆周角的2倍,所以ACB=AOB=1AOB=60ACB=1故答案为:1【点

17、睛】本题考查圆周角定理18、y(x3)21【分析】直接利用配方法将原式变形进而得出答案【详解】y=x26x+8=x26x+91=(x3)21故答案为:y=(x3)21【点睛】本题考查了二次函数的三种形式,正确配方是解答本题的关键三、解答题(共66分)19、(1);(2);(3).【分析】(1)将两点坐标直接代入可求出b,c的值,进而求出抛物线解析式为,得出C的坐标,从而求出直线AC的解析式为y=x+3.(2)设直线的解析式为,直线与抛物线只有一个公共点,方程有两个相等的实数根,再利用根的判别式即可求出b的值.(3)抛物线的顶点坐标为(-1,4),关于y轴的对称点为M(1,4),可确定M在直线A

18、C上,分直线不在直线下方和直线在直线下方两种情况分析即可得解.【详解】解:将A,B坐标代入解析式得出b=-2,c=3,抛物线的解析式为:当x=0 时,y=3,C的坐标为(0,3),根据A,C坐标可求出直线AC的解析式为y=x+3.直线, 设直线的解析式为.直线与抛物线只有一个公共点,方程有两个相等的实数根,解得.直线的解析式为.解析:如图所示,抛物线的顶点坐标为.抛物线的顶点关于轴的对称点为.当时,点在直线上.当直线不在直线下方时,直线能与抛物线在第二象限的部分形成封闭图形.当时,.当直线与直线重合,即动点落在直线上时,点的坐标为.随着点沿抛物线对称轴向上运动,图形逐渐变小,直至直线与轴平行时

19、,图形消失,此时点与抛物线的顶点重合,动点的坐标是,当直线在直线下方时,直线不能与抛物线的任何部分形成封闭图形.综上,点的纵坐标的取值范围是.【点睛】本题是一道二次函数与一次函数相结合的综合性题目,根据点坐标求出抛物线与直线的解析式是解题的关键.考查了学生对数据的综合分析能力,数形结合的能力,是一道很好的题目.20、见解析【分析】两圆的位置关系可以从两圆公共点的个数来考虑两圆无公共点(即公共点的个数为0个),1个公共点,2个公共点,或者通过平移实验直观的探索两圆的相对位置,最后得出答案初中阶段不考虑重合的情况;【详解】解:如图,连接,设 的半径为 ,的半径为圆和圆的位置关系(图形表示)数量表示

20、(圆心距d与两圆的半径r1、r2的数量关系) 【点睛】本题考查两圆的五种位置关系经历探索两个圆之间位置关系的过程,训练学生的探索能力;通过平移实验直观的探索两个圆之间位置关系,发展学生的识图能力和动手操作能力从“形”到“数”和从“数”到“形”的转化是理解本题的关键21、x5或x【分析】先把方程化为一元二次方程的一般形式,然后再运用因式分解法解方程即可解答【详解】将方程整理为一般式,得:x23x100,则(x5)(x+2)0,x50或x+20,解得x5或x2【点睛】本题考查一元二次方程的解法,属于基础题,解题的关键是熟练掌握一元二次方程的四种解法22、(1)见解析;(2)【分析】(1)利用圆周角

21、定理得到ACB=90,再根据切线的性质得ABD=90,则BAD+D=90,然后利用等量代换证明BED=D,从而判断BD=BE;(2)利用圆周角定理得到AFB=90,则根据等腰三角形的性质DF=EF =2,再证明,列比例式求出AD的长,然后计算AD-DE即可【详解】(1)证明:是的直径,是的切线,又平分,;(2)解:是的直径,又,在中,根据勾股定理得,即,解得,【点睛】本题考查了圆周角定理、等腰三角形的判定与性质和相似三角形的判定与性质、切线的性质.熟练掌握切线的性质和相似三角形的判定与性质是解答本题的关键23、(1);(2)3;或【分析】(1)根据直线解析式求出点C坐标,再用待定系数法求出抛物线的解析式;(2)过点P作轴于点F,交DC于点E,用t表示出点P和点E的坐标,的面积用表示,求出最大值;分两种情况进行讨论,或,都是去构造相似三角形,利用对应边成比例列式求出t的值,得到点P的坐标【详解】解:(1)令,则,求出,将A、B、C的坐标代入抛物线解析式,得,解得,;(2)如图,过点P作轴于点F,交DC于点E,设点P的坐标是,则点E的纵坐标为,将代入直线解析式,得,点E坐标是,面积的最大值是3;是以CD为直角边的直角三角形分两种情况,第一种,如图,过点P作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论