广东省汕头市潮阳实验学校2022年九年级数学第一学期期末统考试题含解析_第1页
广东省汕头市潮阳实验学校2022年九年级数学第一学期期末统考试题含解析_第2页
广东省汕头市潮阳实验学校2022年九年级数学第一学期期末统考试题含解析_第3页
广东省汕头市潮阳实验学校2022年九年级数学第一学期期末统考试题含解析_第4页
广东省汕头市潮阳实验学校2022年九年级数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每题4分,共48分)1如图,AB是O的直径,AB4,C为的三等分点(更靠近

2、A点),点P是O上一个动点,取弦AP的中点D,则线段CD的最大值为( )A2BCD2如图,抛物线yax2+bx+c(a0)与y轴交于点C,与x轴交于A,B两点,其中点B的坐标为B(1,0),抛物线的对称轴交x轴于点D,CEAB,并与抛物线的对称轴交于点E现有下列结论:a0;b0;1a+2b+c0;AD+CE1其中所有正确结论的序号是()ABCD3若一元二次方程x24x4m0有两个不等的实数根,则反比例函数y的图象所在的象限是( )A第一、二象限B第一、三象限C第二、四象限D第三、四象限4抛物线y=x2+bx+c过(-2,0),(2,0)两点,那么抛物线对称轴为( )Ax=1By轴Cx= -1D

3、x=-25二次函数y=+2的顶点是( )A(1,2)B(1,2)C(1,2)D(1,2)6在平面直角坐标系中,点关于原点对称的点的坐标是( )ABCD7如图,AD是半圆O的直径,AD12,B,C是半圆O上两点若,则图中阴影部分的面积是( )A6B12C18D248对于二次函数,下列说法正确的是( )A当x0,y随x的增大而增大B当x=2时,y有最大值3C图像的顶点坐标为(2,7)D图像与x轴有两个交点92019的相反数是( )ABC|2019|D201910如图,ABC中A=60,AB=4,AC=6,将ABC沿图示中的虚线剪开,剪下的三角形与ABC不相似的是( )ABCD11如图,ABC中,C

4、AB=65,在同一平面内,将ABC绕点A旋转到AED的位置,使得DCAB,则BAE等于( )A30B40C50D6012如图,O的半径为5,将长为8的线段PQ的两端放在圆周上同时滑动,如果点P从点A出发按逆时针方向滑动一周回到点A,在这个过程中,线段PQ扫过区域的面积为()A9B16C25D64二、填空题(每题4分,共24分)13将二次函数的图像向左平移个单位得到,则函数的解析式为_14如图,直线y=x2与x轴、y轴分别交于点A和点B,点C在直线AB上,且点C的纵坐标为1,点D在反比例函数y=的图象上,CD平行于y轴,SOCD=,则k的值为_15关于的方程有两个不相等的实数根,那么的取值范围是

5、_16如上图,四边形中,点在轴上,双曲线过点,交于点,连接.若,则的值为 _.17如图,绕着点顺时针旋转得到,连接,延长交于点,若,则的长为_18如图,直线l1l2l3,A、B、C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若ABC90,BD3,且,则mn的最大值为_三、解答题(共78分)19(8分)如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(3,0)(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MBMD

6、|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQPA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由20(8分)如图,已知AB为O的直径,PA与O相切于A点,点C是O上的一点,且PC=PA(1)求证:PC是O的切线;(2)若BAC=45,AB=4,求PC的长21(8分)如图1是一种折叠台灯,将其放置在水平桌面上,图2是其简化示意图,测得其灯臂长为灯翠长为,底座厚度为根据使用习惯,灯臂的倾斜角固定为,(1)当转动到与桌面平行时,求点到桌面的距离;(2)在使用过程中发现,当

7、转到至时,光线效果最好,求此时灯罩顶端到桌面的高度(参考数据:,结果精确到个位).22(10分)如图,AB是O的直径,C为O上一点,ADCD,(点D在O外)AC平分BAD(1)求证:CD是O的切线;(2)若DC、AB的延长线相交于点E,且DE12,AD9,求BE的长 23(10分)如图,在中,是外接圆,点是圆上一点,点,分别在两侧,且,连接,延长到点,使(1)求证:为的切线;(2)若的半径为1,当是直角三角形时,求的面积24(10分)在学习了矩形后,数学活动小组开展了探究活动.如图1,在矩形中,点在上,先以为折痕将点往右折,如图2所示,再过点作,垂足为,如图3所示.(1)在图3中,若,则的度数

8、为_,的长度为_.(2)在(1)的条件下,求的长.(3)在图3中,若,则_.25(12分)已知等边ABC的边长为2,(1)如图1,在边BC上有一个动点P,在边AC上有一个动点D,满足APD60,求证:ABPPCD(2)如图2,若点P在射线BC上运动,点D在直线AC上,满足APD120,当PC1时,求AD的长(3)在(2)的条件下,将点D绕点C逆时针旋转120到点D,如图3,求DAP的面积26问题呈现:如图 1,在边长为 1 小的正方形网格中,连接格点 A、B 和 C、D,AB 和 CD 相交于点 P,求 tan CPB 的值方法归纳:求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角

9、三角形,观察发现问题中 CPB不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点 B、 E,可得 BECD,则ABE=CPB,连接AE,那么CPB 就变换到 RtABE 中问题解决:(1)直接写出图 1 中 tan CPB 的值为_;(2)如图 2,在边长为 1 的正方形网格中,AB 与 CD 相交于点 P,求 cos CPB 的值参考答案一、选择题(每题4分,共48分)1、D【解析】取OA的中点Q,连接DQ,OD,CQ,根据条件可求得CQ长,再由垂径定理得出ODAP,由直角三角形斜边中线等于斜边一半求得QD长,根据当C,Q,D三点共线时,CD长最大求解.【详解】解:如

10、图,取AO的中点Q,连接CQ,QD,OD,C为的三等分点,的度数为60,AOC=60,OA=OC,AOC为等边三角形,Q为OA的中点,CQOA,OCQ=30,OQ= ,由勾股定理可得,CQ= ,D为AP的中点,ODAP,Q为OA的中点,DQ= ,当D点CQ的延长线上时,即点C,Q,D三点共线时,CD长最大,最大值为 .故选D 【点睛】本题考查利用弧与圆心角的关系及垂径定理求相关线段的长度,并且考查线段最大值问题,利用圆的综合性质是解答此题的关键.2、D【分析】根据抛物线开口方向即可判断;根据对称轴在y轴右侧即可判断b的取值范围;根据抛物线与x轴的交点坐标与对称轴即可判断;根据抛物线与x轴的交点

11、坐标及对称轴可得AD=BD,再根据CEAB,即可得结论【详解】观察图象开口向下,a0,所以错误;对称轴在y轴右侧,b0,所以正确;因为抛物线与x轴的一个交点B的坐标为(1,0),对称轴在y轴右侧,所以当x=2时,y0,即1a+2b+c0,所以错误;抛物线y=ax2+bx+c(a0)与x轴交于A,B两点,AD=BDCEAB,四边形ODEC为矩形,CE=OD,AD+CE=BD+OD=OB=1,所以正确综上:正确故选:D【点睛】本题考查了二次函数图象与系数的关系,解决本题的关键是综合运用二次函数图象上点的坐标特征、抛物线与x轴的交点进行计算3、B【分析】首先根据一元二次方程根的判别式确定m的取值范围

12、,进而可得m+2的取值范围,然后再根据反比例函数的性质可得答案【详解】一元二次方程x24x4m=0有两个不等的实数根,=b24ac=16+16m0,m1,m+21,反比例函数y=的图象所在的象限是第一、三象限,故选:B【点睛】本题主要考查了反比例函数的性质以及一元二次方程根的判别式,关键是正确确定m的取值范围4、B【分析】由二次函数图像与x轴的交点坐标,即可求出抛物线的对称轴【详解】解:抛物线y=ax2+bx+c(a0)与x轴的交点是(-2,0)和(2,0),这条抛物线的对称轴是:x=,即对称轴为y轴;故选:B【点睛】本题考查了抛物线与x轴的交点问题对于求抛物线的对称轴的题目,可以用公式法,也

13、可以将函数解析式化为顶点式求得,或直接利用公式x=求解5、C【分析】因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),即可求出y=+2的顶点坐标【详解】解:二次函数y=+2是顶点式,顶点坐标为:(1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握6、B【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(-x,-y),可以直接写出答案【详解】点P(-3,4)关于原点对称的点的坐标是(3,-4) 故选:B【点睛】本题主要考查了关于原点对称的点的坐标特点,关键是

14、掌握两个点关于原点对称时坐标变化特点:横纵坐标均互为相反数7、A【分析】根据圆心角与弧的关系得到AOB=BOC=COD=60,根据扇形面积公式计算即可【详解】,AOB=BOC=COD=60.阴影部分面积=.故答案为A.【点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到AOB=BOC=COD=60.8、B【详解】二次函数,所以二次函数的开口向下,当x2,y随x的增大而增大,选项A错误;当x=2时,取得最大值,最大值为3,选项B正确;顶点坐标为(2,-3),选项C错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,故答案选B.考点:二次函数的

15、性质.9、D【解析】根据只有符号不同的两个数互为相反数,可得答案【详解】2019的相反数是2019,故选D.【点睛】此题考查相反数,掌握相反数的定义是解题关键10、A【分析】根据相似三角形的判定定理对各选项进行逐一判定即可【详解】A、两三角形的对应边不成比例,故两三角形不相似,故本选项符合题意,B、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项不符合题意,C、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意,D、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意,故选:A.【点睛】本题考查的是相似三角形的判定,如果一个三角形的两个角与

16、另一个三角形的两个角对应相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且对应的夹角相等,那么这两个三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;熟知相似三角形的判定定理是解答此题的关键11、C【解析】试题分析:DCAB,DCA=CAB=65.ABC绕点A旋转到AED的位置,BAE=CAD,AC=AD.ADC=DCA=65. CAD=180ADCDCA=50. BAE=50故选C考点:1.面动旋转问题; 2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质12、B【分析】如图,线段PQ扫过的面积是图中圆环面积作OEPQ于E,连接OQ求出OE即可解决

17、问题【详解】解:如图,线段PQ扫过的面积是图中圆环面积,作OEPQ于E,连接OQOEPQ,EQPQ4,OQ5,OE,线段PQ扫过区域的面积523216,故选:B【点睛】本题主要考查了轨迹,解直角三角形,垂径定理,解题的关键是理解题意,学会添加常用辅助线.二、填空题(每题4分,共24分)13、【分析】直接将函数解析式写成顶点式,再利用平移规律得出答案【详解】解:,将二次函数的图象先向左平移1个单位,得到的函数的解析式为:,故答案为:【点睛】此题主要考查了二次函数与几何变换,正确掌握平移规律(上加下减,左加右减)是解题关键14、1 【详解】试题分析:把x=2代入y=x2求出C的纵坐标,得出OM=2

18、,CM=1,根据CDy轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D的坐标代入反比例函数的解析式求出k即可解:点C在直线AB上,即在直线y=x2上,C的横坐标是2,代入得:y=22=1,即C(2,1),OM=2,CDy轴,SOCD=,CDOM=,CD=,MD=1=,即D的坐标是(2,),D在双曲线y=上,代入得:k=2=1故答案为1考点:反比例函数与一次函数的交点问题点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目

19、15、且【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得=4-12m1且m1,求出m的取值范围即可详解:一元二次方程mx2-2x+3=1有两个不相等的实数根,1且m1,4-12m1且m1,m且m1,故答案为:m且m1点睛:本题考查了一元二次方程ax2+bx+c=1(a1,a,b,c为常数)根的判别式=b2-4ac当1,方程有两个不相等的实数根;当=1,方程有两个相等的实数根;当1,方程没有实数根也考查了一元二次方程的定义16、6【分析】如图,过点F作交OA于点G,由可得OA、BF与OG的关系,设,则,结合可得点B的坐标,将点E、点F代入中即可求出k值.【详解】解:如图,过点F作交O

20、A于点G,则 设,则 ,即 双曲线过点,点 化简得,即 解得,即.故答案为:6.【点睛】本题主要考查了反比例函数的图像,灵活利用坐标表示线段长和三角形面积是解题的关键.17、【分析】根据题意延长交于点,则,延长交于点,根据已知可以得到CC,BC,BF,BF; 求出,MECBEC , 得到 求出CE即可.【详解】RtABC绕着点顺时针旋转得到,.又.如图,延长交于点,则,延长交于点,则.,即,解得,MECBEC,解得CE=CC+EC=3+=【点睛】此题主要考查了旋转变化的性质和特征,相似三角形的性质,熟记性质是解题的关键,注意相似三角形的选择.18、【分析】过作于,延长交于,过作于,过作于,设,

21、得到,根据相似三角形的性质得到,由,得到,于是得到,然后根据二次函数的性质即可得到结论【详解】解:过作于,延长交于,过作于,过作于,设,即,即,当最大时,当时,的最大值为故答案为:【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m的函数解析式是解题的关键三、解答题(共78分)19、(1)抛物线的解析式是y=x2+x+3;(2)|MBMD|取最大值为;(3)存在点P(1,6)【分析】(1)根据待定系数法,可得函数解析式;(2)根据对称性,可得MC=MD,根据解方程组,可得B点坐标,根据两边之差小于第三边,可得B,C,M

22、共线,根据勾股定理,可得答案;(3)根据等腰直角三角形的判定,可得BCE,ACO,根据相似三角形的判定与性质,可得关于x的方程,根据解方程,可得x,根据自变量与函数值的对应关系,可得答案【详解】解:(1)将A(0,3),C(3,0)代入函数解析式,得,解得,抛物线的解析式是y=x2+x+3;(2)由抛物线的对称性可知,点D与点C关于对称轴对称,对l上任意一点有MD=MC,联立方程组 ,解得(不符合题意,舍),B(4,1),当点B,C,M共线时,|MBMD|取最大值,即为BC的长,过点B作BEx轴于点E,在RtBEC中,由勾股定理,得BC=,|MBMD|取最大值为;(3)存在点P使得以A,P,Q

23、为顶点的三角形与ABC相似,在RtBEC中,BE=CE=1,BCE=45,在RtACO中,AO=CO=3,ACO=45,ACB=1804545=90,过点P作PGy轴于G点,PGA=90,设P点坐标为(x,x2+x+3)(x0)当PAQ=BAC时,PAQCAB,PGA=ACB=90,PAQ=CAB,PGABCA,即,解得x1=1,x2=0(舍去),P点的纵坐标为12+1+3=6,P(1,6),当PAQ=ABC时,PAQCBA,PGA=ACB=90,PAQ=ABC,PGAACB,即=3,解得x1=(舍去),x2=0(舍去)此时无符合条件的点P,综上所述,存在点P(1,6)【点睛】本题考查了二次函

24、数综合题,解(1)的关键是利用待定系数法求函数解析式;解(2)的关键是利用两边只差小于第三边得出M,B,C共线;解(3)的关键是利用相似三角形的判定与性质得出关于x的方程,要分类讨论,以防遗漏20、(1)见解析;(2)2【分析】(1)根据切线的性质得到PAB=90,根据等腰三角形的性质得到OAC=OCA,求得PCCO,根据切线的判定定理即可得到结论;(2)连接BC,先根据ACB是等腰直角三角形,得到AC和,从而推出PAC是等腰直角三角形,根据等腰直角三角形的性质即可得到PC的值【详解】(1)连接CO,PA是O的切线,PAB=90,OA=OC,OAC=OCA,PC=PA,PAC=PCA,PCO=

25、PCA+ACO=PAC+OAC=PAB=90,PCCO,OC是半径PC是O的切线;(2)连接BC,为O直径,【点睛】本题考查了切线的判定要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可同时考查了勾股定理和等腰直角三角形的性质21、(1)点到桌面的距离为;(2)灯罩顶端到桌面的高度约为【分析】(1)作CMEF于M,BPAD于P,交EF于N,则CMBN,PN3,由直角三角形的性质得出APAB14,BPAP14,得出CMBNBPPN143即可;(2)作CMEF于M,作BQCM于Q,BPAD于P,交EF于N,则QBN90,CMBN,PN3,由(1)得QMBN,求出CBQ

26、25,由三角函数得出CQBCsin25,得出CMCQQM即可【详解】解当转动到与桌面平行时,如图2所示:作于于,交于则,即点到桌面的距离为;作于,作于于,交于,如图3所示:则,由得,在中,,即此时灯罩顶端到桌面的高度约为.【点睛】本题考查了解直角三角形、翻折变换的性质、含30角的直角三角形的性质等知识;通过作辅助线构造直角三角形是解题的关键22、(1)证明见解析;(2)BE的长是【分析】(1)连接OC,根据条件先证明OCAD,然后证出OCCD即可;(2)先利用勾股定理求出AE的长,再根据条件证明ECOEDA,然后利用对应边成比例求出OC的长,再根据BE=AE2OC计算即可【详解】(1)连接OC

27、,AC平分DAB,DAC=CAB,OC=OA,OAC=OCA,DAC=OCA,OCAD,ADCD,OCCD,OC为O半径,CD是O的切线(2)在RtADE中,由勾股定理得:AE=15,OCAD,ECOEDA,解得:OC=,BE=AE2OC=152=,答:BE的长是23、(1)详见解析;(2)或【分析】(1)先证,再证,得到,即可得出结论;(2)分当时和当时两种情况分别求解即可.【详解】(1),是直径,是的切线(2)当时,是等边三角形,可得,当时,易知,的边上的高,【点睛】此题是圆的综合题,主要考查了切线的性质和判定,等边三角形的判定和性质,求三角形的面积熟练掌握切线的判定与圆周角定理是解题的关

28、键24、(1),1;(2)2;(3)【分析】(1)根据矩形的性质得出,可以推出,再根据折叠的性质即可得出答案;设AE=x,则BE=2x,再根据勾股定理即可得出AE的值(2)作交于点,在中根据余弦得出BG,从而得出CG,再证明四边形是矩形即可得出答案;(3)根据可得AG的值,从而推出BG的值,再根据线段的和与差即可得出答案.【详解】(1)四边形ABCD为矩形,设AE=x,则BE=2x在中,根据勾股定理即解得,(舍去)的长度为1故答案为:,1(2)如图,作交于点,由(1)知.在中,即, ,.,四边形是矩形,(3)【点睛】本题考查了矩形与折叠、勾股定理、三角函数,结合图象构造直角三角形是解题的关键.25、(1)见解析;(2);(3)【分析】(1)先利用三角形的内角和得出BAP+APB120,再用平角得出APB+CPD120,进而得出BAPCPD,即可得出结论;(2)先构造出含30角的直角三角形,求出PE,再用勾股定理求出PE,进而求出AP,再判断出ACPAPD,得出比例式即可得出结论;(3)先求出CD,进而得出CD,再构造出直角三角形求出DH,进而得出DG,再求出AM,最后用面积差即可得出结论【详解】解:(1)ABC是等边三角形,BC60,在ABP中,B+APB+BAP180,BAP+APB120,APB+C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论