煤矿矿井通风系统中英文对照外文翻译文献_第1页
煤矿矿井通风系统中英文对照外文翻译文献_第2页
煤矿矿井通风系统中英文对照外文翻译文献_第3页
煤矿矿井通风系统中英文对照外文翻译文献_第4页
煤矿矿井通风系统中英文对照外文翻译文献_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 中英文对照翻译比较美国煤矿矿井通风系统的效率摘 要随着能源消耗的加剧,提高煤矿通风系统的效率成为了一个日益重要的课题。因为通风机的耗能占了煤矿能耗的一大部分,因此建立一个高效的通风系统是煤矿主动降低生产成本的重要途径。通常,衡量矿井通风系统效率的方法是计算其容积效率,简记作用于矿井生产的有效风量占矿井总风量的比例。这个衡量标准的目的是用数据来对美国的矿井通风系统做一次全国性的比较。这项研究的成果旨在揭示当今煤矿通风系统的效率以及哪些因素可能导致矿井通风系统效率的或高或低。容积效率的定义矿井通风系统的容积效率定义为矿井的有效风量与矿井总风量的比值。大家对“有效风量”的组成还是众说纷纭。McPh

2、erson 把有效风量定义为:“到达工作面的风和那些用于稀释例如:机电硐室、水泵房和充电站等硐室内空气的风的总和”。然而,Hartman 则认为有效风量包括总回风石门风量和带区内风量的总和。本次研究中,我们认为矿井空气中的有效风量包括用于稀释工作面空气的风,还有用于主要生产设备(例如机电硐室、泵房以及充电站等)用风点的风量之和。在确定矿井主要风机总风量和矿井有效风量总和之后,下列公式可以用来计算矿- 1 - 井通风系统效率。通风系统效率 矿井有效风量100%(1)主要风机总风量通风系统效率值会在一个很大的范围内波动。McPherson 的陈述中透露通风效率值可以从 75%降至 10%。本次研究

3、中,矿井通风系统的效率值在14.5%到 71.6%的范围内。当矿井通风系统的效率值在一个较低的水平时,意味着主要通风机鼓出的大量的风没有起到作用,导致了大量潜在的能源浪费。导致通风系统效率降低的因素造成容积效率低下最主要的两个因素包括漏风和流经废弃工作面、采空区而损失的风。由于石门和填充物而产生的漏风可以通过改善矿井的建设以及加强维护来实现最小化。然而,无论矿井建设的质量有多么棒,在那些使用了大量填充物的矿井中想要避免漏风是不可能的。另外,随着通风机风压上升,漏风也自然而然的就会增多,因此,在高风压风机的矿井中更易于产生漏风。在矿井中减少漏风的一个可靠的方法是尽量避免入口处风流流向正相反的方向

4、。这可以通过设置中立的一个甚至多个入口来分流、重建风路或者借助于防水煤柱来分流和重建风路来实现。当然,这需要在矿井的规划阶段就结合矿井通风系统来进行设计,但是这样的规划会在将来的矿井生产中节省大量通风机的运行费用。新建矿井往往比进行了长时间生产的矿井在计算通风效率值上更有优势。在那些老矿井中,不仅密封条件老化而产生大量漏洞,而且其本身就存在大量煤矿采空区。当处理这些先前为房柱式采煤法或长壁式采煤法的采空区时,从法定规程上讲,必须要先用水冲洗矿井巷道,然后将其封住。由于分流到废弃工作面和被封区的风不计入有效风量。因此,拥有大量旧巷道和密封区的煤矿往往会得到一个相对较低的通风效率值。数据分析通风系

5、统的数据从遍布全国范围内各地区的 23 个煤矿搜集而来,这些地区主要包括:阿巴拉契亚中部和北部、西肯塔基、伊利诺斯盆地、西山地区和圣胡安盆地。在这 23 个煤矿中,有 11 个煤矿采用的是长壁采煤法,另外 12 个煤矿采用的是房、柱式采煤法。这 23 个煤矿不仅在分布地区上大相径庭,而且在规模- 2 - 上也有很大差异,小到总风量为 139700 立方英尺每分钟的房、柱式煤矿,大到总风量为 1150000 立方英尺每分钟的长壁式煤矿。这些数据制成图表 1,如下:表一、不同型号矿井的总风量矿井类型矿井总数最小270.0139.7139.7最大1150.0525.0长壁式房、柱式合计1112235

6、51.21150.0下面是从所有煤矿搜集的信息,包括所有计算通风系统效率必需的数据。 矿井类型 主要通风机风量 最后回风石门和回风井的风量 充电站、机电硐室及泵房的风量总和长壁式煤矿通风系统的效率和房、柱式煤矿通风系统的效率有着显而易见的差异。统计数据显示,房、柱式采煤法的矿井通风系统效率有着较高的平均值。房、柱式采煤法矿井平均利用风量占总风量的 44.4%,相反,长壁式采煤法的矿井的利用率只有 33.9%。这个结果由图表 2 显示如下:表二、不同类型矿井的容积效率矿井类型最小14.5%23.1%最大长壁式111233.9%44.4%65.0%71.6%房、柱式- 3 - 总计2314.5%3

7、8.3%71.6%下面的图表显示了在不同效率范围的矿井分布情况。例如,图表显示,在20%-30%范围内的矿井数最多,为 8 个。98765Volumetic Effiency Range4321010%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80%数据一:不同效率值的矿井数量分布图根据所有煤矿通风系统的效率平均值,长壁式采煤法矿井和房、柱式采煤法矿井都可以用一下图来表示其风量利用分布。正如我们所预想的一样,绝大多数有效风量都用来为工作面服务,而只有非常少的一部分通风用于矿井设备。下面就是收集到的用于矿井工作设备的风量的清单: 长壁工作面

8、数量和连续工作的矿工组数 缝隙的平均高度 主要通风机的工作风压 进入煤壁的风 矿井密封处的大体数目用于调查研究的所有收集到的相关数据都支持容积效率和矿井有关参数有关系。最明显的是全风压时期的容积效率,一个可以想到的事实是高风压将会产生更多的漏风进而降低矿井容积效率。下面的图表阐述了通风机作用和容积效率的 这种关系。然而,我们必须对造成通风系统效率低下的因素的复杂性有清楚的认识。如前所述,众所周知的是高风机风压可以催生更多的漏洞和低通风效率。但是,也必须记得的是大型矿井往往拥有最高的风压这一假定,也不得不假设大型矿井一般会有更多的密封处(用来封住那些潜在的漏洞)和大量可能的煤矿采空区。这些密封处

9、和采空区仍然需要通风和密封。因此,诸多这些因素也在影响风机风压和容积效率的关系上扮演重要的角色。我们发现容积效率和缝隙高度、连续工作矿工组数、煤矿产量以及煤矿密封数并没有任何必然的联系。因此影响通风系统效率、漏洞和采空区漏风的主要因素和当前所述的参数并没有密切的关系就不足为奇了。总结本次研究阐述了美国煤矿通风系统的平均效率,大致能够达到 38%,但是仍然有相当大的提升空间,通风效率有望超过 70%。房柱式采煤法的煤矿通风系统效率稍高,大约为 44%,而采用长壁式采煤法的煤矿这一效率则平均为 34%。较低的通风效率一般是由于主要通风机风压过高所致,这也意味着大型煤矿在提高矿井通风系统效率方面面临

10、更大的挑战。由于安全是构建一个高效的矿井通风系统所要考虑的首要问题,所以一个良好的通风系统和合理的通风设计在高效生产中是必须重点考虑的课题。此外,提高通风系统效率对降低煤矿生产成本也意义非凡。因此,促进一个良好的通风系统也能使采矿作业和活动大大受益。可以左右通风系统效率高低的因素不仅数量繁多而且关系复杂。从以上研究所得的数据来看,影响通风系统效率的因素很明显不是单方面的。最普通也最常见的因素主要有:矿井漏洞的年久失修、填塞物老化、高风机风压引起的漏风、大量采空区以及密封区所需的风。影响每一个煤矿通风系统效率高低的因素都是上述方面的综合,因此,如果一个矿井有提高矿井通风系统效率的打算,通风系统的

11、设计者需要在识别、期望以及避免这些可能导致通风系统效率低下的因素上- 5 - 耗费大量的心血。- 6 - COAL MINE VENTILATION EFFICIENCY: ACOMPARISON OF US COALMINE VENTILATION SYSTEMSAbstractWith ever rising energy costs, it is increasingly important for mines to operatewith energy efficiency. As a large portion of a mines energy consumption is oft

12、enattributed to the operation of mine ventilation fans,maintaining an efficient ventilationsystem is a critical pro-active way for mining companies to reduce power costs. Acommon way to measure a mines ventilation system efficiency is to calculate thevolumetric efficiency,which is simply a calculati

13、on of the percentage of total mine airthat is usefully employed for production. The purpose of this study is to document anationwide comparison of the volumetric efficiency of U.S.underground coal miningoperations. The results will aim to show just how efficient todays coal mineventilation systems a

14、re and what factors may be causing their various efficiencies andinefficiencies.Definition of Volumetric EfficiencyMine ventilation volumetric efficiency is defined as the percentage of total mineair that is “usefully employed” for production. There can be room for discrepancieswhen considering what

15、 constitutes being“usefully employed” for air in a mine.McPherson defines air that is usefully employed as “the sum of airflows reaching theworking faces and those used to ventilate equipment such as electrical gear, pumps orbattery charging stations” (McPherson, 1993). Hartman considers usefully em

16、ployedventilation air to be the sum of air at the last open crosscut and belt air(Hartman,1997).For this study, mine air that is considered to be usefully employedconsists of air that is used for ventilating working faces as well as air that is used for- 7 - equipment that is critical to production

17、(such as electrical gear, pumps, batterycharging stations). After determining the total mine air quantity at the main fans andcalculating the summation all air that is usefully employed in a mine, the followingequation can be used for calculating ventilation volumetric efficiency:Equation 1. Volumet

18、ric EfficiencyAirflow UsefulVolumetic Efficiency 100%Total AirflowValues for ventilation volumetric efficiency fall in a wide range. McPherson statesvalues may range from 75% down to 10% (McPherson, 1993). In this study, mineshad efficiency values which fell within the range of 14.5% to 71.6% (shown

19、 below inTable 2). Mines with efficiency values in the lower part of this range indicate thatlarge volumes of air are not being employed effectively, creating a potentially largeand wasteful energy expenseFactors Affecting Efficiency LossThe two most significant factors that can cause lower volumetr

20、ic efficiencyinclude losses from leakage as well as the use of ventilation air to ventilate oldworkings,pillared/gob areas, or seals.Leakage through stoppings and doors can be minimized through goodconstruction and maintenance. However,leakage is certainly inevitable when largenumbers of stoppings a

21、re present in a mine, no matter how well-constructed.Additionally, the potential for leakage naturally increases with fan pressure, so mineswith high operating pressure are more prone to leakage. A reliable method foravoiding leakage in a mine is to minimize connections between entries having flowsi

22、n opposite directions. This can be accomplished by dividing intake and return entrieswith a neutral entry or entries, or by geographically separating intake and returnentries with barrier pillars (McPherson, 1993). This, of course, requires incorporationof ventilation design at the mine planning sta

23、ge, but such planning can save future fanpower costs.Young mines often have a volumetric efficiency advantage over mines that have- 8 - been in operation for a longer period of time. In older mines, not only do stoppingsdeteriorate over time, creating leakage, but more mined-out areas inherently exi

24、st.When dealing with previously pillared or longwalled areas, legally speaking, a minemust either ventilate these areas with bleeder entries or seal them. Since air dedicatedto ventilating old workings and seals does not count as usefully employed air; mineswith large amount of bleeder entries or se

25、als tend to have a lower ventilationefficiency valueData AnalysisVentilation data was gathered from 23 mines from all regions of the country:Central and Northern Appalachia, Western Kentucky, Illinois Basin, WesternMountains and the San Juan Basin. Of the 23 mines, 11 are longwall operations and12 a

26、re Room and Pillar operations. Not only are the studied mines diverse in location,but also in size, as the total mine airflow values range from 139,700 cfm for a smallroom and pillar mine to 1,150,000 cfm for a large longwall operation. These data aretabulated below in Table 1.Table 1. Total Mine In

27、take Air Statistical Data by Mine270.0139.7139.71150.0525.0Room and PillarTotal/Combined332.1551.2231150.0The following information was gathered from all mines; including the necessarydata for calculating ventilation efficiency: mine type main mine fan airflows airflows at last open crosscuts or hea

28、dgates airflows at battery charging stations, electrical equipment and pump stations,etc.Noticeable differences were discovered between ventilation efficiency values for- 9 - longwall mines versus room and pillar mines. The data analysis shows that, onaverage, room and pillar mining operations tend

29、to have higher ventilation efficiencies.The average room and pillar operation usefully employs 44.4% of its total air, asopposed to 33.9% for longwall operations. These results are shown below in Table 2.Table 2.Volumetric Efficiency Statistical Data by Mine14.5%23.1%14.5%The following graph (Figure

30、 1) represents the distribution of mines in the variousranges of volumetric efficiency. For example, the chart shows that there are a largenumber (8) of mining operations between the range of 20% and 30%.98765Volumetic Effiency Range4321010%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80%Figure

31、1.Statistical Distribution of Number of Mines in Each V olumetric EfficiencValue RangeBased on average values for all mines, both longwall and room and pillar, thefollowing chart (Figure 2) was created to illustrate the distribution of ventilation air inmines. As one would expect, the majority of us

32、efully employed air is used to ventilate the working areas, while ventilating supporting equipment is notably less.The following is a list of supporting mine data that was gathered: number of longwall and continuous miner production units average seam height main mine fan operating pressures airflow

33、s sweeping mine seals (intake to seal to return configuration) approximate number of seals in mineAll additional supporting data was gathered with the intention of investigating anypossible correlations between volumetric efficiency and other mine performanceparameters. The most obvious correlation

34、occurs when plotting volumetric efficiencyversus total fan pressure. One would expect that higher fan pressure would createhigher volumes of leakage throughout the mine, and reducing volumetric efficiency.The following graph in Figure 3 illustrates this correlation with a power functiontrend-line.Fi

35、gure 3.Volumetric Efficiency vs. Fan PressureHowever, one must keep in mind the complexity of the factors behind a lowventilation efficiency value. As just stated, it is well known that higher fan pressurefacilitates more leakage and lower ventilation efficiency.But keep in mind theassumption could

36、be made that the mines having the highest fan pressures are mostlikely the largest mines. It could also be assumed that the largest mines have thelargest number of stoppings (creating potential leakage) as well as a potentially high- 11 - amount of previously mined-out areas, which are required eith

37、er to be ventilated orsealed. Therefore, it is highly possible that these other factors may have a role in therelationship between fan pressure and volumetric efficiency.No obvious correlationswere discovered between ventilation volumetric efficiency and seam height,number ofproduction units, mine p

38、roduction or number of mine seals. This is not particularlysurprising as the main factors that affect ventilation efficiency, leakage and airventilating old workings, are not highly affected by the previously stated parametersConclusionsThis study illustrates that the average coal mine ventilation s

39、ystem in the UnitedStates is operating with reasonable volumetric efficiency, at approximately 38%, buthas room for improvement as one mine shows that it is possible to reach over 70%efficiency. Room and pillar mines are operating with slightly higher efficiencies ofapproximately 44% while longwall

40、mines are operating with an average efficiency of34%. The lower efficiency value for longwall operations, in combination with thecorrelation of high main mine fan pressure to lower efficiency, illustrates that largermines have the greatest challenges to increase their ventilation efficiency.While safety is the pri

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论