2022年湖南长沙市雅礼洋湖中考数学五模试卷含解析及点睛_第1页
2022年湖南长沙市雅礼洋湖中考数学五模试卷含解析及点睛_第2页
2022年湖南长沙市雅礼洋湖中考数学五模试卷含解析及点睛_第3页
2022年湖南长沙市雅礼洋湖中考数学五模试卷含解析及点睛_第4页
2022年湖南长沙市雅礼洋湖中考数学五模试卷含解析及点睛_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()Aa4Bbd0C|a|b|Db+c02如图,在等腰直角三角形ABC中,C=90,D为BC的中点,将ABC折叠,使点A与点D重合,EF为折痕,则sinBED的值

2、是( )ABCD3下列函数是二次函数的是( )ABCD4世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是A20、20B30、20C30、30D20、305若一个多边形的内角和为360,则这个多边形的边数是( )A3B4C5D66如图,在平行四边形ABCD中,AB=4,BC=6,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN交AD于点E,则CDE的周长是()A7B10C11D127把8a38a2+2a进行因式分解,结果正确的是(

3、)A2a(4a24a+1)B8a2(a1)C2a(2a1)2D2a(2a+1)28小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且ab.根据需要小明列出以下三种混合方案:(单位:千克)甲种糖果乙种糖果混合糖果方案1235方案2325方案32.52.55则最省钱的方案为( )A方案1B方案2C方案3D三个方案费用相同9若抛物线yx2(m3)xm能与x轴交,则两交点间的距离最值是( )A最大值2,B最小值2C最大值2D最小值210点是一次函数图象上一点,若点在第一象限,则的取值范围是( )ABCD二、填空题(本大题共6个小题,每

4、小题3分,共18分)11如图,AB是O的直径,点E是的中点,连接AF交过E的切线于点D,AB的延长线交该切线于点C,若C30,O的半径是2,则图形中阴影部分的面积是_12一艘轮船在小岛A的北偏东60方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45的C处,则该船行驶的速度为_海里/时13在实数范围内分解因式:x2y2y_14如图,ABCD中,对角线AC,BD相交于点O,且ACBD,请你添加一个适当的条件_,使ABCD成为正方形 15已知|x|=3,y2=16,xy0,则xy=_16如图,在矩形ABCD中,DEAC,垂足为E,且tanADE,AC5,则AB的长_三、解答题(共8

5、题,共72分)17(8分)如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D点落在BC边上的D处,直线l与CD边交于Q点(1)在图(1)中利用无刻度的直尺和圆规作出直线l(保留作图痕迹,不写作法和理由)(2)若PDPD,求线段AP的长度;求sinQDD18(8分)如图,在ABC中,点D、E分别在边AB、AC上,DEBC,且DE=BC如果AC=6,求AE的长;设,求向量(用向量、表示)19(8分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能

6、的(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图利用图中所提供的信息解决以下问题:小明一共统计了 个评价;请将图1补充完整;图2中“差评”所占的百分比是 ;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率20(8分)小新家、小华家和书店依次在东风大街同一侧(忽略三者与东风大街的距离)小新小华两人同时各自从家出发沿东风大街匀速步行到书店买书,已知小新到达书店用了20分钟,小华的步行速度是40米/分,设小新、小华离小华家的距离分别为y1(米)、y2(米),两人离家后步行的时间为x(分),

7、y1与x的函数图象如图所示,根据图象解决下列问题:(1)小新的速度为_米/分,a=_;并在图中画出y2与x的函数图象(2)求小新路过小华家后,y1与x之间的函数关系式(3)直接写出两人离小华家的距离相等时x的值21(8分)已知抛物线经过点,把抛物线与线段围成的封闭图形记作 (1)求此抛物线的解析式;(2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点当为等腰直角三角形时,求的值;(3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围22(10分)如图,抛物线(a0)的图象与x轴交于A、B两

8、点,与y轴交于C点,已知B点坐标为(4,0)(1)求抛物线的解析式;(2)试探究ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求MBC的面积的最大值,并求出此时M点的坐标23(12分)计算:.化简:.24如图,以ABC的边AB为直径的O分别交BC、AC于F、G,且G是的中点,过点G作DEBC,垂足为E,交BA的延长线于点D(1)求证:DE是的O切线;(2)若AB=6,BG=4,求BE的长;(3)若AB=6,CE=1.2,请直接写出AD的长参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据数轴上点的位置关系,可得a,b,c,d的大小,根

9、据有理数的运算,绝对值的性质,可得答案【详解】解:由数轴上点的位置,得a4b0c1dA、a4,故A不符合题意;B、bd0,故B不符合题意;C、|a|4,|b|2,|a|b|,故C符合题意;D、b+c0,故D不符合题意;故选:C【点睛】本题考查了有理数大小的比较、有理数的运算,绝对值的性质,熟练掌握相关的知识是解题的关键2、A【解析】DEF是AEF翻折而成,DEFAEF,A=EDF,ABC是等腰直角三角形,EDF=45,由三角形外角性质得CDF+45=BED+45,BED=CDF,设CD=1,CF=x,则CA=CB=2,DF=FA=2-x,在RtCDF中,由勾股定理得,CF2+CD2=DF2,即

10、x2+1=(2-x)2,解得x=,sinBED=sinCDF=故选:A3、C【解析】根据一次函数的定义,二次函数的定义对各选项分析判断利用排除法求解【详解】A. y=x是一次函数,故本选项错误;B. y=是反比例函数,故本选项错误;C.y=x-2+x2是二次函数,故本选项正确;D.y= 右边不是整式,不是二次函数,故本选项错误.故答案选C.【点睛】本题考查的知识点是二次函数的定义,解题的关键是熟练的掌握二次函数的定义.4、C【解析】分析:由表提供的信息可知,一组数据的众数是这组数中出现次数最多的数,而中位数则是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的众

11、数,中位数详解:根据右图提供的信息,捐款金额的众数和中位数分别是30,30.故选C.点睛:考查众数和中位数的概念,熟记概念是解题的关键.5、B【解析】利用多边形的内角和公式求出n即可.【详解】由题意得:(n-2)180=360, 解得n=4; 故答案为:B.【点睛】本题考查多边形的内角和,解题关键在于熟练掌握公式.6、B【解析】四边形ABCD是平行四边形,AD=BC=4,CD=AB=6,由作法可知,直线MN是线段AC的垂直平分线,AE=CE,AE+DE=CE+DE=AD,CDE的周长=CE+DE+CD=AD+CD=4+6=1故选B7、C【解析】首先提取公因式2a,进而利用完全平方公式分解因式即

12、可【详解】解:8a38a2+2a=2a(4a24a+1)=2a(2a1)2,故选C.【点睛】本题因式分解中提公因式法与公式法的综合运用.8、A【解析】求出三种方案混合糖果的单价,比较后即可得出结论.【详解】方案1混合糖果的单价为,方案2混合糖果的单价为,方案3混合糖果的单价为.ab,方案1最省钱.故选:A.【点睛】本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键.9、D【解析】设抛物线与x轴的两交点间的横坐标分别为:x1,x2,由韦达定理得:x1+x2=m-3,x1x2=-m,则两交点间的距离d=|x1-x2|= ,m=1时,dmin=2故选D.10、B【解析】试题解析:把点代入一次

13、函数得,点在第一象限上,可得,因此,即,故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】首先根据切线的性质及圆周角定理得CE的长以及圆周角度数,进而利用锐角三角函数关系得出DE,AD的长,利用SADES扇形FOE图中阴影部分的面积求出即可【详解】解:连接OE,OF、EF,DE是切线,OEDE,C30,OBOE2,EOC60,OC2OE4,CEOCsin60= 点E是弧BF的中点,EABDAE30,F,E是半圆弧的三等分点,EOFEOBAOF60,OEAD,DAC60,ADC90,CEAE DE,ADDEtan60= SADE FOE和AEF同底等高,FOE和AEF面积相

14、等,图中阴影部分的面积为:SADES扇形FOE故答案为【点睛】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出FOE和AEF面积相等是解题关键12、【解析】设该船行驶的速度为x海里/时,由已知可得BC3x,AQBC,BAQ60,CAQ45,AB80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC40403x,解方程即可【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45的C处,由题意得:AB80海里,BC3x海里,在直角三角形ABQ中,BAQ60,B906030,AQAB40,BQAQ40,在直角三角形AQC中,CAQ4

15、5,CQAQ40,BC40403x,解得:x.即该船行驶的速度为海里/时;故答案为:.【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.13、y(x+)(x) 【解析】先提取公因式y后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解【详解】x2y-2y=y(x2-2)=y(x+)(x-)故答案为y(x+)(x-)【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止14、BAD=90 (不唯一)【解析】根据正方形的判定定理添加条件即可.【详解】解:平行四边形 ABCD的对角线AC与

16、BD相交于点O,且ACBD,四边形ABCD是菱形,当BAD=90时,四边形ABCD为正方形.故答案为:BAD=90.【点睛】本题考查了正方形的判定:先判定平行四边形是菱形,判定这个菱形有一个角为直角.15、3【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想详解:因为|x|=1,所以x=1因为y2=16,所以y=2又因为xy0,所以x、y异号,当x=1时,y=-2,所以x-y=3;当x=-1时,y=2,所以x-y=-3故答案为:3.点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论16、3.【解析】先根据同角的余角相等证明ADEAC

17、D,在ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.【详解】四边形ABCD是矩形,ADC90,ABCD,DEAC,AED90,ADE+DAE90,DAE+ACD90,ADEACD,tanACDtanADE,设AD4k,CD3k,则AC5k,5k5,k1,CDAB3,故答案为3.【点睛】本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.三、解答题(共8题,共72分)17、(1)见解析;(2) 【解析】(1)根据

18、题意作出图形即可;(2)由(1)知,PD=PD,根据余角的性质得到ADP=BPD,根据全等三角形的性质得到AD=PB=4,得到AP=2;根据勾股定理得到PD=2,根据三角函数的定义即可得到结论【详解】(1)连接PD,以P为圆心,PD为半径画弧交BC于D,过P作DD的垂线交CD于Q,则直线PQ即为所求;(2)由(1)知,PD=PD,PDPD,DPD=90,A=90,ADP+APD=APD+BPD=90,ADP=BPD,在ADP与BPD中,ADPBPD,AD=PB=4,AP= BDPB=ABAP=6AP=4,AP=2;PD=2,BD=2CD=BC- BD=4-2=2PD=PD,PDPD,DD=PD

19、=2,PQ垂直平分DD,连接Q D则DQ= DQQDD=QDDsinQDD=sinQDD=【点睛】本题考查了作图-轴对称变换,矩形的性质,折叠的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键18、(1)1;(2).【解析】(1)由平行线截线段成比例求得AE的长度;(2)利用平面向量的三角形法则解答【详解】(1)如图,DEBC,且DE=BC,又AC=6,AE=1(2),又DEBC,DE=BC,【点睛】考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义19、(1)150;作图见解析;13.3%;(2)【解析】(1)用“中评”、“差评”的人数除以二者的百分比

20、之和即可得总人数;用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;根据“差评”的人数总人数100%即可得“差评”所占的百分比;(2)可通过列表表示出甲、乙对商品评价的所有可能结果数,根据概率公式即可计算出两人中至少有一个给“好评”的概率【详解】小明统计的评价一共有:(40+20)(1-60%=150(个);“好评”一共有15060%=90(个),补全条形图如图1:图2中“差评”所占的百分比是:100%=13.3%;(2)列表如下:好中差好好,好好,中好,差中中,好中,中中,差差差,好差,中差,差由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,两人中至少

21、有一个给“好评”的概率是考点:扇形统计图;条形统计图;列表法与树状图法20、(1)60;960;图见解析;(2)y1=60 x240(4x20);(3)两人离小华家的距离相等时,x的值为2.4或12.【解析】(1)先根据小新到小华家的时间和距离即可求得小新的速度和小华家离书店的距离,然后根据小华的速度即可画出y2与x的函数图象;(2)设所求函数关系式为y1=kx+b,由图可知函数图像过点(4,0),(20,960),则将两点坐标代入求解即可得到函数关系式;(3)分小新还没到小华家和小新过了小华家两种情况,然后分别求出x的值即可.【详解】(1)由图可知,小新离小华家240米,用4分钟到达,则速度

22、为2404=60米/分,小新按此速度再走16分钟到达书店,则a=1660=960米,小华到书店的时间为96040=24分钟,则y2与x的函数图象为:故小新的速度为60米/分,a=960;(2)当4x20时,设所求函数关系式为y1=kx+b(k0),将点(4,0),(20,960)代入得:,解得:,y1=60 x240(4x20时)(3)由图可知,小新到小华家之前的函数关系式为:y=2406x,当两人分别在小华家两侧时,若两人到小华家距离相同,则2406x=40 x,解得:x=2.4;当小新经过小华家并追上小华时,两人到小华家距离相同,则60 x240=40 x,解得:x=12;故两人离小华家的

23、距离相等时,x的值为2.4或12.21、(1);(2)-2或-1;(3)-1n1或1n3.【解析】(1)把点,代入抛物线得关于a,b的二元一次方程组,解出这个方程组即可;(2)根据题意画出图形,分三种情况进行讨论;(3)作出图形,把其中一点恰好在抛物线上时算出,再确定其取值范围.【详解】解:(1)依题意,得: 解得: 此抛物线的解析式 ;(2)设直线AB的解析式为y=kx+b,依题意得: 解得: 直线AB的解析式为y=-x.点P的横坐标为m,且在抛物线上,点P的坐标为(m, )轴,且点Q有线段AB上,点Q的坐标为(m,-m) 当PQ=AP时,如图,APQ=90,轴,解得,m=-2或m=1(舍去

24、) 当AQ=AP时,如图,过点A作ACPQ于C,为等腰直角三角形,2AC=PQ即m=1(舍去)或m=-1.综上所述,当为等腰直角三角形时,求的值是-2惑-1.;(3)如图,当n1时,依题意可知C,D的横坐标相同,CE=2(1-n)点E的坐标为(n,n-2)当点E恰好在抛物线上时,解得,n=-1.此时n的取值范围-1n1时,依题可知点E的坐标为(2-n,-n)当点E在抛物线上时, 解得,n=3或n=1.n1.n=3.此时n的取值范围1n3.综上所述,n的取值范围为-1n1或1n3.【点睛】本题主要考查了二次函数与几何图形的综合应用,掌握相关几何图形的性质和二次函数的性质是解题的关键.22、(1)

25、;(2)(,0);(3)1,M(2,3)【解析】试题分析:方法一:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可(2)首先根据抛物线的解析式确定A点坐标,然后通过证明ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标(3)MBC的面积可由SMBC=BCh表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M方法二:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可(2)通过求出A,B,C三点坐标,利用勾股定理或利用斜率垂直公式可求出ACBC,从而求出

26、圆心坐标(3)利用三角形面积公式,过M点作x轴垂线,水平底与铅垂高乘积的一半,得出MBC的面积函数,从而求出M点试题解析:解:方法一:(1)将B(1,0)代入抛物线的解析式中,得:0=16a12,即:a=,抛物线的解析式为:(2)由(1)的函数解析式可求得:A(1,0)、C(0,2);OA=1,OC=2,OB=1,即:OC2=OAOB,又:OCAB,OACOCB,得:OCA=OBC;ACB=OCA+OCB=OBC+OCB=90,ABC为直角三角形,AB为ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0)(3)已求得:B(1,0)、C(0,2),可得直线BC的解析式为:y=x2;设直线lBC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=,即:,且=0;11(2b)=0,即b=1;直线l:y=x1所以点M即直线l和抛物线的唯一交点,有:,解得:即 M(2,3)过M点作MNx轴于N,SBMC=S梯形OCMN+SMNBSOCB=2(2+3)+2321=1方法二:(1)将B(1,0)代入抛物线的解析式中,得:0=16

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论