




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1在ABC中,AD和BE是高,ABE=45,点F是AB的中点,AD与FE,BE分别交于点G、HCBE=BAD,有下列结论:FD=FE;AH=2CD;BCAD=AE2;SBE
2、C=SADF其中正确的有()A1个B2个C3个D4个2如图所示,点E是正方形ABCD内一点,把BEC绕点C旋转至DFC位置,则EFC的度数是( )A90B30C45D603下列图案中,既是轴对称图形又是中心对称图形的是()ABCD4如图,BDAC,BE平分ABD,交AC于点E,若A=40,则1的度数为()A80B70C60D405如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()ABCD6如图,在中,点D、E、F分别在边、上,且,下列四种说法: 四边形是平行四边形;如果,那么四边形是矩形;如果平分,那么四边形是菱形;
3、如果且,那么四边形是菱形. 其中,正确的有( ) 个A1B2C3D47若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A12B14C15D258在-,0,2这四个数中,最小的数是( )ABC0D29如图,O的半径OC与弦AB交于点D,连结OA,AC,CB,BO,则下列条件中,无法判断四边形OACB为菱形的是( )ADAC=DBC=30BOABC,OBACCAB与OC互相垂直DAB与OC互相平分10“射击运动员射击一次,命中靶心”这个事件是( )A确定事件 B必然事件 C不可能事件 D不确定事件11如图,在坐标系中放置一菱形OABC,已知ABC=60,点B在y轴上,OA=1,先将菱形
4、OABC沿x轴的正方向无滑动翻转,每次翻转60,连续翻转2017次,点B的落点依次为B1,B2,B3,则B2017的坐标为()A(1345,0)B(1345.5,)C(1345,)D(1345.5,0)12下列各式计算正确的是( )A(b+2a)(2ab)=b24a2B2a3+a3=3a6Ca3a=a4D(a2b)3=a6b3二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点若DE=1,则DF的长为_14如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,
5、BC交于点O,则AB:CD等于_15如图,直线yk1xb与双曲线交于A、B两点,其横坐标分别为1和5,则不等式k1xb的解集是16如图,将边长为的正方形ABCD绕点A逆时针方向旋转30后得到正方形ABCD,则图中阴影部分面积为_平方单位17如图,在平面直角坐标系xOy中,DEF可以看作是ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由ABC得到DEF的过程:_18在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约
6、有_个三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象已知A、B两点相距4米,探测线与地面的夹角分别是30和45,试确定生命所在点C的深度(精确到0.1米,参考数据:)20(6分)(2017四川省内江市)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0t10,B:10t20,C:20t30,D:t30),根据图中信息,解答下列问题:(1)这项被调查的总人数是多少人?
7、(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率21(6分)已知P是的直径BA延长线上的一个动点,P的另一边交于点C、D,两点位于AB的上方,6,OP=m,如图所示另一个半径为6的经过点C、D,圆心距(1)当m=6时,求线段CD的长;(2)设圆心O1在直线上方,试用n的代数式表示m;(3)POO1在点P的运动过程中,是否能成为以OO1为腰的等腰三角形,如果能,试求出此时n的值;如果不能,请说明理由22(8分)文艺复兴时期,意大利艺术大师达芬奇研究过用圆弧围
8、成的部分图形的面积问题已知正方形的边长是2,就能求出图中阴影部分的面积证明:S矩形ABCD=S1+S2+S3=2,S4= ,S5= ,S6= + ,S阴影=S1+S6=S1+S2+S3= 23(8分)如图所示,在中,用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)连接AP当为多少度时,AP平分24(10分)已知AB是O的直径,弦CD与AB相交,BAC40(1)如图1,若D为弧AB的中点,求ABC和ABD的度数;(2)如图2,过点D作O的切线,与AB的延长线交于点P,若DPAC,求OCD的度数25(10分)解分式方程:=126(12分)某校初三进行了第三次模拟考试,该校领导为了了解学生
9、的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理(1)填空_,_,数学成绩的中位数所在的等级_(2)如果该校有1200名学生参加了本次模拟测,估计等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A级学生的数学成绩的平均分数如下分数段整理样本等级等级分数段各组总分人数48435741712根据上表绘制扇形统计图27(12分)先化简,再求值:,其中a满足a2+2a11参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据题意和图形,可以判断各小题中的结论是否成立,从而可以解答本题【
10、详解】在ABC中,AD和BE是高,ADB=AEB=CEB=90,点F是AB的中点,FD=AB,FE=AB,FD=FE,正确;CBE=BAD,CBE+C=90,BAD+ABC=90,ABC=C,AB=AC,ADBC,BC=2CD,BAD=CAD=CBE,在AEH和BEC中, ,AEHBEC(ASA),AH=BC=2CD,正确;BAD=CBE,ADB=CEB,ABDBCE,即BCAD=ABBE,AEB=90,AE=BE,AB=BEBCAD=BEBE,BCAD=AE2;正确;设AE=a,则AB=a,CE=aa,=, 即 ,AF=AB, ,SBECSADF,故错误,故选:C【点睛】本题考查相似三角形的
11、判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答2、C【解析】根据正方形的每一个角都是直角可得BCD=90,再根据旋转的性质求出ECF=BCD=90,CE=CF,然后求出CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答【详解】四边形ABCD是正方形,BCD=90,BEC绕点C旋转至DFC的位置,ECF=BCD=90,CE=CF,CEF是等腰直角三角形,EFC=45.故选:C.【点睛】本题目是一道考查旋转的性质问题每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边相等,故 为等腰直角三角形.3、B
12、【解析】根据轴对称图形与中心对称图形的概念求解【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误故选B【点睛】考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合4、B【解析】根据平行线的性质得到根据BE平分ABD,即可求出1的度数【详解】解:BDAC,BE平分ABD,故选B【点睛】本题考查角平分线的性质和平行线的性质,熟记它们的性质是解题的关键5、
13、C【解析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得【详解】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为: 故选C【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图6、D【解析】先由两组对边分别平行的四边形为平行四边形,根据DECA,DFBA,得出AEDF为平行四边形,得出正确;当BAC=90,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出正确;若AD平分BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代
14、换可得EAD=EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出正确;由AB=AC,ADBC,根据等腰三角形的三线合一可得AD平分BAC,同理可得四边形AEDF是菱形,正确,进而得到正确说法的个数【详解】解:DECA,DFBA,四边形AEDF是平行四边形,选项正确;若BAC=90,平行四边形AEDF为矩形,选项正确;若AD平分BAC,EAD=FAD,又DECA,EDA=FAD,EAD=EDA,AE=DE,平行四边形AEDF为菱形,选项正确;若AB=AC,ADBC,AD平分BAC,同理可得平行四边形AEDF为菱形,选项正确,则其中正确的个数有4个故选D【点睛】此题考查了
15、平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键7、C【解析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】三角形的两边长分别为5和7,2第三条边12,5+7+2三角形的周长5+7+12,即14三角形的周长24,故选C.【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.8、D【解析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.
16、【详解】在,0,1这四个数中,10,故最小的数为:1故选D【点睛】本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数的大小比较.9、C【解析】(1)DAC=DBC=30,AOC=BOC=60,又OA=OC=OB,AOC和OBC都是等边三角形,OA=AC=OC=BC=OB,四边形OACB是菱形;即A选项中的条件可以判定四边形OACB是菱形;(2)OABC,OBAC,四边形OACB是平行四边形,又OA=OB,四边形OACB是菱形,即B选项中的条件可以判定四边形OACB是菱形;(3)由OC和AB互相垂直不能证明到四边形OACB是菱形,即C选项中的条件不能判定四边形O
17、ACB是菱形;(4)AB与OC互相平分,四边形OACB是平行四边形,又OA=OB,四边形OACB是菱形,即由D选项中的条件能够判定四边形OACB是菱形.故选C.10、D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D考点:随机事件11、B【解析】连接AC,如图所示四边形OABC是菱形,OA=AB=BC=OCABC=60,ABC是等边三角形AC=ABAC=OAOA=1,AC=1画出第5次、第6次、第7次翻转后的图形,如图所示由图可知:每翻转6次,图形向右平移23=3366+1,点B1向右平移1322(即3362)到点B3B1的坐标为(1.5, ),B3
18、的坐标为(1.5+1322,),故选B点睛:本题是规律题,能正确地寻找规律 “每翻转6次,图形向右平移2”是解题的关键.12、C【解析】各项计算得到结果,即可作出判断解:A、原式=4a2b2,不符合题意;B、原式=3a3,不符合题意;C、原式=a4,符合题意;D、原式=a6b3,不符合题意,故选C二、填空题:(本大题共6个小题,每小题4分,共24分)13、1.1【解析】求出EC,根据菱形的性质得出ADBC,得出相似三角形,根据相似三角形的性质得出比例式,代入求出即可【详解】DE=1,DC=3,EC=3-1=2,四边形ABCD是菱形,ADBC,DEFCEB,DF=1.1,故答案为1.1【点睛】此
19、题主要考查了相似三角形的判定与性质,解题关键是根据菱形的性质证明DEFCEB,然后根据相似三角形的性质可求解.14、2:1【解析】过点O作OEAB于点E,延长EO交CD于点F,可得OFCD,由AB/CD,可得AOBDOC,根据相似三角形对应高的比等于相似比可得,由此即可求得答案.【详解】如图,过点O作OEAB于点E,延长EO交CD于点F,AB/CD,OFD=OEA=90,即OFCD,AB/CD,AOBDOC,又OEAB,OFCD,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,=,故答案为:2:1【点睛】本题考查了相似三角形的的判定与性质,熟练掌握相似三角形对应高的比等于相似比是解本题
20、的关键.15、2x1或x1【解析】不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质不等式k1xb的解集即k1xb的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线yk1xb在双曲线下方的自变量x的取值范围即可而直线yk1xb的图象可以由yk1xb向下平移2b个单位得到,如图所示根据函数图象的对称性可得:直线yk1xb和yk1xb与双曲线的交点坐标关于原点对称由关于原点对称的坐标点性质,直线yk1xb图象与双曲线图象交点A、B的横坐标为A、B两点横坐标的相反数,即为1,2由图知,当2x1或x1时,直线yk1xb图象在双曲线图象下方不等式k1xb的解集是2x1或x
21、116、62【解析】由旋转角BAB=30,可知DAB=9030=60;设BC和CD的交点是O,连接OA,构造全等三角形,用S阴影部分=S正方形S四边形ABOD,计算面积即可【详解】解:设BC和CD的交点是O,连接OA,AD=AB,AO=AO,D=B=90,RtADORtABO,OAD=OAB=30,OD=OB= ,S四边形ABOD=2SAOD=2=2,S阴影部分=S正方形S四边形ABOD=62【点睛】此题的重点是能够计算出四边形的面积注意发现全等三角形17、平移,轴对称【解析】分析:根据平移的性质和轴对称的性质即可得到由OCD得到AOB的过程详解:ABC向上平移5个单位,再沿y轴对折,得到DE
22、F,故答案为:平移,轴对称点睛:考查了坐标与图形变化-旋转,平移,轴对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小18、1【解析】估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案【详解】因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为200.3=6(个),则红球大约有20-6=1个,故答案为:1【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越
23、小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、5.5米【解析】过点C作CDAB于点D,设CD=x,在RtACD中表示出AD,在RtBCD中表示出BD,再由AB=4米,即可得出关于x的方程,解出即可.【详解】解:过点C作CDAB于点D,设CD=x,在RtACD中,CAD=30,则AD=CD=x.在RtBCD中,CBD=45,则BD=CD=x.由题意得,xx=4,解得:.答:生命所在点C的深度为5.5米.2
24、0、(1)50;(2)108;(3)【解析】分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案本题解析:解:(1)调查的总人数是:1938%50(人)C组的人数有501519412(人),补全条形图如图所示(2)画树状图如下共有12种等可能的结果,恰好选中甲的结果有6种,P(恰好选中甲)点睛:本题考查了列表法与树状图、条形统计图的综合运用熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键21
25、、 (1)CD=;(2)m= ;(3) n的值为或 【解析】分析:(1)过点作,垂足为点,连接解Rt,得到的长由勾股定理得的长,再由垂径定理即可得到结论; (2)解Rt,得到和Rt中,由勾股定理即可得到结论; (3)成为等腰三角形可分以下几种情况讨论: 当圆心、在弦异侧时,分和当圆心、在弦同侧时,同理可得结论详解:(1)过点作,垂足为点,连接在Rt, 6, 由勾股定理得: ,(2)在Rt,在Rt中,在Rt中,可得: ,解得(3)成为等腰三角形可分以下几种情况: 当圆心、在弦异侧时i),即,由,解得即圆心距等于、的半径的和,就有、外切不合题意舍去ii),由 ,解得:,即 ,解得当圆心、在弦同侧时
26、,同理可得: 是钝角,只能是,即,解得综上所述:n的值为或点睛:本题是圆的综合题考查了圆的有关性质和两圆的位置关系以及解直径三角形解答(3)的关键是要分类讨论22、S1,S3,S4,S5,1【解析】利用图形的拼割,正方形的性质,寻找等面积的图形,即可解决问题.【详解】由题意:S矩形ABCD=S1+S1+S3=1,S4=S1,S5=S3,S6=S4+S5,S阴影面积=S1+S6=S1+S1+S3=1故答案为S1,S3,S4,S5,1【点睛】考查正方形的性质、矩形的性质、扇形的面积等知识,解题的关键是灵活运用所学知识解决问题.23、(1)详见解析;(2)30【解析】(1)根据线段垂直平分线的作法作
27、出AB的垂直平分线即可;(2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得B的度数,可得答案【详解】(1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,EF为AB的垂直平分线,PA=PB,点P即为所求(2)如图,连接AP,AP是角平分线,PAC+PAB+B=90,3B=90,解得:B=30,当时,AP平分【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键24、(1)45;(2)26【解析】(1)根据圆周角和圆心角的关系和图形可以求得ABC和A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 计算机二级Web考试的难点试题及答案
- 财务决策支持的逻辑结构试题及答案
- 财务成本管理核心原则试题及答案
- 设计重构概念Photoshop考题及答案
- Delphi软件开发生命周期管理试题及答案
- 跟进2025年财务成本管理的试题及答案
- 计算机二级Delphi行业前景试题及答案
- 2025年Python考试研究讨论试题与答案
- 计算机算法的时间复杂度解析试题及答案
- 提升逻辑能力的小技巧试题及答案
- 完结版抗滑稳定及泵房底板应力计算
- 装饰公司工长承包协议书范本
- 小学数学五年级下册-第五单元-分数除法-第五单元强化训练(北师大版-含答案)
- 患者隐私保护培训课件
- 品牌策划与管理(第5版) 课件全套 程宇宁 第1-10章 品牌基本概念- 品牌国际化战略与管理
- 数字人直播代运营协议
- 品牌授权并委托加工产品协议书范本
- 加气站气瓶充装质量保证体系手册2024版
- 湖北省武汉市华师一附中2025届初中生物毕业考试模拟冲刺卷含解析
- 南京2025年江苏南京师范大学招聘专职辅导员9人笔试历年参考题库附带答案详解
- 胎儿酒精暴露机制研究-洞察分析
评论
0/150
提交评论