2021-2022学年湖北省枣阳市中考数学四模试卷含解析及点睛_第1页
2021-2022学年湖北省枣阳市中考数学四模试卷含解析及点睛_第2页
2021-2022学年湖北省枣阳市中考数学四模试卷含解析及点睛_第3页
2021-2022学年湖北省枣阳市中考数学四模试卷含解析及点睛_第4页
2021-2022学年湖北省枣阳市中考数学四模试卷含解析及点睛_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )ABCD2如图,在平面直角坐标系中,直线y=k1x+2(k10)与x轴交于点A,与y轴交于点B,与反比例函数y=在第二象限内的图象交于点C,连接OC,若SOBC=1,

2、tanBOC=,则k2的值是()A3BC3D63如图是一个正方体展开图,把展开图折叠成正方体后,“爱”字一面相对面上的字是()A美B丽C泗D阳4如图,用一个半径为6cm的定滑轮带动重物上升,假设绳索(粗细不计)与滑轮之间没有滑动,绳索端点G向下移动了3cm,则滑轮上的点F旋转了( )A60B90C120D455下列计算中,错误的是( )A;B;C;D6抛物线y=ax24ax+4a1与x轴交于A,B两点,C(x1,m)和D(x2,n)也是抛物线上的点,且x12x2,x1+x24,则下列判断正确的是()AmnBmnCmnDmn7如图,空心圆柱体的左视图是( )ABCD8如图,已知,为反比例函数图象

3、上的两点,动点在轴正半轴上运动,当线段与线段之差达到最大时,点的坐标是( ) ABCD9如图,在ABC中,AB=AC=5,BC=6,点M为BC的中点,MNAC于点N,则MN等于()ABCD10将抛物线y=x26x+21向左平移2个单位后,得到新抛物线的解析式为()Ay=(x8)2+5By=(x4)2+5Cy=(x8)2+3Dy=(x4)2+311下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()ABCD12如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )A B C D二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,已知双曲线经过直角三角形OAB斜边O

4、A的中点D,且与直角边AB相交于点C若点A的坐标为(-6,4),则AOC的面积为 14一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0180)被称为一次操作若五次操作后,发现赛车回到出发点,则角为15若关于x的一元二次方程x2+2xm2m=0(m0),当m=1、2、3、2018时,相应的一元二次方程的两个根分别记为1、1,2、2,2018、2018,则:的值为_16如图,ABC中,AD是中线,AE是角平分线,CFAE于F,AB=10,AC=6,则DF的长为_17如图,直线与x轴、y轴分别交于点A、B;点Q是以C(0,1)为圆心、1为半径的圆上一动点,过Q点的切线交线段A

5、B于点P,则线段PQ的最小是_18有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,边长为1的正方形ABCD的对角线AC、BD相交于点O有直角MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转MPN,旋转角为(090),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G(1)求四边形OEBF的面积;(2)求证:OGBD=EF2;(3)在旋转过程中,当BEF与COF的面积之和最大时,求AE的长20(6分)某

6、小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10,待加热到100,饮水机自动停止加热,水温开始下降,水温y()和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程设某天水温和室温为20,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0 x8和8xa时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40的开水,问他需要在什么时间段内接水21(6分)如图,ABC中,AB=AC=4,D、E分别为AB

7、、AC的中点,连接CD,过E作EFDC交BC的延长线于F;(1)求证:DE=CF;(2)若B=60,求EF的长22(8分)已知:如图,在菱形中,点,分别为,的中点,连接,求证:;当与满足什么关系时,四边形是正方形?请说明理由23(8分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图)请回答以下问题:(1)该班学生选择 观点的人数最多,共有 人,在扇形统计图中,该观点所在扇形区域的圆心角

8、是 度(2)利用样本估计该校初三学生选择“中技”观点的人数(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答)24(10分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021(1)根据上述信息可知:甲命中环数的中位数是_环,乙命中环数的众数是_环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会

9、变小(填“变大”、“变小”或“不变”)25(10分)已知四边形ABCD为正方形,E是BC的中点,连接AE,过点A作AFD,使AFD=2EAB,AF交CD于点F,如图,易证:AF=CD+CF(1)如图,当四边形ABCD为矩形时,其他条件不变,线段AF,CD,CF之间有怎样的数量关系?请写出你的猜想,并给予证明;(2)如图,当四边形ABCD为平行四边形时,其他条件不变,线段AF,CD,CF之间又有怎样的数量关系?请直接写出你的猜想 图 图 图26(12分)计算:+821(+1)0+2sin6027(12分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决

10、定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:车型 目的地A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出

11、的四个选项中,只有一项是符合题目要求的)1、C【解析】根据轴对称图形与中心对称图形的概念求解【详解】A不是轴对称图形,也不是中心对称图形故错误;B不是轴对称图形,也不是中心对称图形故错误;C是轴对称图形,也是中心对称图形故正确;D不是轴对称图形,是中心对称图形故错误故选C【点睛】掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180后与原图重合2、C【解析】如图,作CHy轴于H通过解直角三角形求出点C坐标即可解决问题.【详解】解:如图,作CHy轴于H由题意B(0,2), CH=1,tanBOC= OH=3,C(1,3)

12、,把点C(1,3)代入,得到k2=3,故选C【点睛】本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型3、D【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”字一面相对面上的字是“阳”;故本题答案为:D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形是解题的关键4、B【解析】由弧长的计算公式可得答案.【详解】解:由圆弧长计算公式,将l=3代入,可得n =90,故选B.【点睛】本题主要考查圆弧长计算

13、公式,牢记并运用公式是解题的关键.5、B【解析】分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可详解:A,故A正确; B,故B错误; C故C正确; D,故D正确; 故选B点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错6、C【解析】分析:将一般式配方成顶点式,得出对称轴方程根据抛物线与x轴交于两点,得出求得距离对称轴越远,函数的值越大,根据判断出它们与对称轴之间的关系即可判定.详解: 此抛物线对称轴为 抛物线与x轴交于两点,当时,得 故选C点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数

14、值越大,7、C【解析】根据从左边看得到的图形是左视图,可得答案【详解】从左边看是三个矩形,中间矩形的左右两边是虚线,故选C【点睛】本题考查了简单几何体的三视图,从左边看得到的图形是左视图8、D【解析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在ABP中,|AP-BP|AB,延长AB交x轴于P,当P在P点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可【详解】把,代入反比例函数 ,得:,在中,由三角形的三边关系定理得:,延长交轴于,当在点时,即此时线段与线段之差达到最大,设直线的

15、解析式是,把,的坐标代入得:,解得:,直线的解析式是,当时,即,故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度9、A【解析】连接AM,根据等腰三角形三线合一的性质得到AMBC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长【详解】解:连接AM,AB=AC,点M为BC中点,AMCM(三线合一),BM=CM,AB=AC=5,BC=6,BM=CM=3,在RtABM中,AB=5,BM=3,根据勾股定理得:AM= = =4,又SAMC=MNAC=AMMC,MN= = 故选A【点睛】综合

16、运用等腰三角形的三线合一,勾股定理特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边10、D【解析】直接利用配方法将原式变形,进而利用平移规律得出答案【详解】y=x26x+21=(x212x)+21=(x6)216+21=(x6)2+1,故y=(x6)2+1,向左平移2个单位后,得到新抛物线的解析式为:y=(x4)2+1故选D【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键11、C【解析】试题分析:由中心对称图形的概念可知,这四个图形中只有第三个是中心对称图形,故答案选C考点:中心对称图形的概念12、A【解析】由三视图的定义可知,A是该

17、几何体的三视图,B、C、D不是该几何体的三视图.故选A.点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.二、填空题:(本大题共6个小题,每小题4分,共24分)13、2【解析】解:OA的中点是D,点A的坐标为(6,4),D(1,2),双曲线y=经过点D,k=12=6,BOC的面积=|k|=1又AOB的面积=64=12,AOC的面积=AOB的面积BOC的面积=121=214、7 2或144【解析】五次操作后,发现赛车回到出发点,正好走了一个正五边形,因为原地逆时针方向旋转角a(

18、0180),那么朝左和朝右就是两个不同的结论所以角=(5-2)1805=108,则180-108=72或者角=(5-2)1805=108,180-722=14415、【解析】利用根与系数的关系得到1+1=-2,11=-12;2+2=-2,22=-23;2018+2018=-2,20182018=-20181把原式变形,再代入,即可求出答案【详解】x2+2x-m2-m=0,m=1,2,3,2018,由根与系数的关系得:1+1=-2,11=-12;2+2=-2,22=-23;2018+2018=-2,20182018=-20181原式= = =2()=2(1-)=,故答案为【点睛】本题考查了根与系

19、数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a0)的两根时,x1+x2=-,x1x2=16、1【解析】试题分析:如图,延长CF交AB于点G,在AFG和AFC中,GAF=CAF,AF=AF,AFG=AFC,AFGAFC(ASA)AC=AG,GF=CF又点D是BC中点,DF是CBG的中位线DF=BG=(ABAG)=(ABAC)=117、【解析】解:过点C作CP直线AB于点P,过点P作C的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示当x=0时,y=3,点B的坐标为(0,3);当y=0时,x=4,点A的坐标为(4,0),OA=4,OB=3,AB=5,sinB=C(0,1),BC=

20、3(1)=4,CP=BCsinB=PQ为C的切线,在RtCQP中,CQ=1,CQP=90,PQ=故答案为18、【解析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=.故其概率为:【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏用到的知识点为:概率=所求情况数与总情况数之比三、解答题:(本大题共9个小题,共78分,

21、解答应写出文字说明、证明过程或演算步骤19、(1);(2)详见解析;(3)AE=【解析】(1)由四边形ABCD是正方形,直角MPN,易证得BOECOF(ASA),则可证得S四边形OEBF=SBOC=S正方形ABCD;(2)易证得OEGOBE,然后由相似三角形的对应边成比例,证得OGOB=OE2,再利用OB与BD的关系,OE与EF的关系,即可证得结论;(3)首先设AE=x,则BE=CF=1x,BF=x,继而表示出BEF与COF的面积之和,然后利用二次函数的最值问题,求得AE的长【详解】(1)四边形ABCD是正方形,OB=OC,OBE=OCF=45,BOC=90,BOF+COF=90,EOF=90

22、,BOF+COE=90,BOE=COF,在BOE和COF中, BOECOF(ASA),S四边形OEBF=SBOE+SBOE=SBOE+SCOF=SBOC=S正方形ABCD (2)证明:EOG=BOE,OEG=OBE=45,OEGOBE,OE:OB=OG:OE,OGOB=OE2, OGBD=EF2;(3)如图,过点O作OHBC,BC=1, 设AE=x,则BE=CF=1x,BF=x,SBEF+SCOF=BEBF+CFOH 当时,SBEF+SCOF最大;即在旋转过程中,当BEF与COF的面积之和最大时, 【点睛】本题属于四边形的综合题,主要考查了正方形的性质,旋转的性质、全等三角形的判定与性质、相似

23、三角形的判定与性质、勾股定理以及二次函数的最值问题注意掌握转化思想的应用是解此题的关键20、(1)当0 x8时,y=10 x+20;当8xa时,y=;(2)40;(3)要在7:508:10时间段内接水【解析】(1)当0 x8时,设yk1xb,将(0,20),(8,100)的坐标分别代入yk1xb,即可求得k1、b的值,从而得一次函数的解析式;当8xa时,设y,将(8,100)的坐标代入y,求得k2的值,即可得反比例函数的解析式;(2)把y20代入反比例函数的解析式,即可求得a值;(3)把y40代入反比例函数的解析式,求得对应x的值,根据想喝到不低于40 的开水,结合函数图象求得x的取值范围,从

24、而求得李老师接水的时间范围【详解】解: (1)当0 x8时,设yk1xb,将(0,20),(8,100)的坐标分别代入yk1xb,可求得k110,b20当0 x8时,y10 x20.当8xa时,设y,将(8,100)的坐标代入y,得k2800当8xa时,y.综上,当0 x8时,y10 x20;当8xa时,y(2)将y20代入y,解得x40,即a40.(3)当y40时,x20要想喝到不低于40 的开水,x需满足8x20,即李老师要在7:38到7:50之间接水【点睛】本题主要考查了一次函数及反比例函数的应用题,是一个分段函数问题,分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的

25、划分,既要科学合理,又要符合实际21、证明见解析;【解析】根据两组对边分别平行的四边形是平行四边形即可证明;只要求出CD即可解决问题.【详解】证明:、E分别是AB、AC的中点,又四边形CDEF为平行四边形,又为AB中点,在中,四边形CDEF是平行四边形,【点睛】本题考查平行四边形的判定和性质、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型22、见解析【解析】(1)由菱形的性质得出BD,ABBCDCAD,由已知和三角形中位线定理证出AEBEDFAF,OFDC,OEBC,OEBC,由(SAS)证明BCEDCF即可;(2)由(1)得:AEOEOFAF,证出

26、四边形AEOF是菱形,再证出AEO90,四边形AEOF是正方形【详解】(1)证明:四边形ABCD是菱形,BD,ABBCDCAD,点E,O,F分别为AB,AC,AD的中点,AEBEDFAF,OFDC,OEBC,OEBC,在BCE和DCF中,,BCEDCF(SAS);(2)当ABBC时,四边形AEOF是正方形,理由如下:由(1)得:AEOEOFAF,四边形AEOF是菱形,ABBC,OEBC,OEAB,AEO90,四边形AEOF是正方形.【点睛】本题考查了全等三角形、菱形、正方形的性质,解题的关键是熟练的掌握菱形、正方形、全等三角形的性质.23、(4)A高中观点4 446;(4)456人;(4)16

27、【解析】试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;(4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;(4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解试题解析:(4)该班学生选择A高中观点的人数最多,共有60%50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%460=446

28、;(4)80044%=456(人),估计该校初三学生选择“中技”观点的人数约是456人;(4)该班选择“就业”观点的人数=50(4-60%-44%)=508%=4(人),则该班有4位女同学和4位男生选择“就业”观点,列表如下:共有44种等可能的结果数,其中出现4女的情况共有4种所以恰好选到4位女同学的概率=212=16考点:4列表法与树状图法;4用样本估计总体;4扇形统计图24、(1)8, 6和9;(2)甲的成绩比较稳定;(3)变小 【解析】(1)根据众数、中位数的定义求解即可;(2)根据平均数的定义先求出甲和乙的平均数,再根据方差公式求出甲和乙的方差,然后进行比较,即可得出答案;(3)根据方

29、差公式进行求解即可【详解】解:(1)把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8;在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9;故答案为8,6和9;(2)甲的平均数是:(7+8+8+8+9)5=8,则甲的方差是: (7-8)2+3(8-8)2+(9-8)2=0.4,乙的平均数是:(6+6+9+9+10)5=8,则甲的方差是: 2(6-8)2+2(9-8)2+(10-8)2=2.8,所以甲的成绩比较稳定;(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小故答案为变小【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差方差通常用s2来表示,计算公式是:s2=(x1-)2+(x2-)2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论