立体几何五 夹角的计算_第1页
立体几何五 夹角的计算_第2页
立体几何五 夹角的计算_第3页
立体几何五 夹角的计算_第4页
立体几何五 夹角的计算_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、空间向量在立体几何中的应用一:两直线的夹角:1当两条直线i与i共面时,我们把两条直线交角中,范围在r0,乞内的角叫i2r2_作两直线的夹角.当直线l与l是异面直线时,在直线l上任取一点A作ABl,1212我们把直线l和直线AB的夹角叫作异面直线l与l的夹角.112异面直线的夹角的范围是f0,壬2-2.直线夹角的向量计算方法:已知空间两条直线a,b,且A,C是直线a上不同的两点,B,D是直线b上不同的两点,设直线a,b的夹角0由向量AC,BD确定,满足COS9_IAC-BDI_IACI-1BDI要点诠释:空间两直线所成的角可以通过这两直线的方向向量的夹角来求得,但二者不完全相等,当两方向向量的夹

2、角是钝角时,应取其补角作为两异面直线所成的角.例1.如图所示,在四棱锥P-ABCD中,底面二二是矩形,亠丄底面肪二.三是二的中点,已知um,二亠:,求异面直线二与二所成的角的大小.【变式2】如图,直三棱柱ABC-ABC中,AA_AB_2,AC_BC,D为BBiii11的中点,若异面直线AB与CD的夹角为-::,求AC的长.1要点二:平面间的夹角1.平面间的夹角的定义:平面兀与兀相交于直线l,12点R为直线l上任意一点,过点R,在平面兀上作直线l丄11l,在平面兀上作直线l丄l,则lDl=R。我们把直线2212l和l的夹角叫做平面兀与兀的夹角.12122.平面间夹角的向量计算方法:设平面兀与兀的

3、法向量分别为n和n,平面兀与兀的夹角为0,则121212cos0=|cosfn,nhJh两平面的夹角范围是0,11J叩4L2-3.“平面间的夹角”不同于“二面角”(1)二面角的有关概念半平面:一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫半平面.二面角:从一条直线出发的两个半平面所组成的图形叫二面角.如图,可记作二面角a-a-p或a-AB-p.(2)区别:平面间的夹角二面角构成面-线-面半平面线半平面范围0,_2o,表示法语言叙述语言叙述或符号表示 B例2.如图,在五面体ABCDEF中,FA丄平面ABCD,ADBCFE,AB丄AD,1AF=AB=BC=FE=AD,求平面ACD和

4、平面CDE的夹角的余弦值.2D变式:如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD丄底面ABCD,PD=DC,点E是PC的中点,作EF丄PB交PB于点F.(1)求证:PB丄平面EFD;(2)求平面二与平面:的夹角的大小.三:直线和平面的夹角斜线与平面的夹角:平面的一条斜线与它在该平面内的射影的夹角叫作该直线与此平面的夹角.如图,l是平面的一条斜线,斜足为0,OA是l在平面a内的射影,ZPOA就是直线l与平面a的夹角.直线和平面所成角的范围是o,-_._2_最小角定理:斜线和射影所成的角,是斜线和这个平面内所有直线所成角中最小的角;线面角的向量计算方法设直线l的方向向量为a,平面a

5、的法向量为u,直线与平面所成的角为0,a与u的角为申,则有sin0=lcos申1=上丄lal-1ul例3.如图,在正四面体ABCD中,E为AD的中点,求直线CE与平面BCD成的角. 1变式:四棱锥S-ABCD中,底面ABCD为平行四边形,ZABC=45,AB=2,BC=22,侧面SBC丄底面ABCD.SA=SB=:3.证明SA丄BC;求直线SD与平面SAB所成角的正弦值.变式:如图,四棱锥P-ABCD中,AB=AP,PA丄底面ABCD,四边形ABCD中,AB丄AD,AB+AD=4,CD=2,ZCDA=45。若直线PB与平面PCD所成的角为30。,求线段AB的长.习题1:如图,在AABC中,ZABC=60。,ABAC=90,AD是BC上的高,沿AD把ABD折起,使ZBDC=900.设E为BC的中点,求AE与DB夹角的余弦值.习题2:如图,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论