




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图,四边形为平行四边形,为中点,为的三等分点(靠近)若,则的值为( )ABCD2的展开式中的项的系数为( )A120B80C60D403抛物线C:y2=2px的焦点F是双曲线C2:x
2、2m-y21-m=10m1的右焦点,点P是曲线C1,C2的交点,点Q在抛物线的准线上,FPQ是以点P为直角顶点的等腰直角三角形,则双曲线C2的离心率为( )A2+1B22+3C210-3D210+34已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为( )ABCD5如图是国家统计局公布的年入境游客(单位:万人次)的变化情况,则下列结论错误的是( ) A2014年我国入境游客万人次最少B后4年我国入境游客万人次呈逐渐增加趋势C这6年我国入境游客万人次的中位数大于13340万人次D前3年我国入境游客万人次数据的方差小于后3年我国入境游客万人次数据的方差6已知.给出下列判断:若,且,
3、则;存在使得的图象向右平移个单位长度后得到的图象关于轴对称;若在上恰有7个零点,则的取值范围为;若在上单调递增,则的取值范围为.其中,判断正确的个数为( )A1B2C3D47设是两条不同的直线,是两个不同的平面,则下列命题正确的是( )A若,则B若,则C若,则D若,则8已知是等差数列的前项和,若,则( )A5B10C15D209设点是椭圆上的一点,是椭圆的两个焦点,若,则( )ABCD10是边长为的等边三角形,、分别为、的中点,沿把折起,使点翻折到点的位置,连接、,当四棱锥的外接球的表面积最小时,四棱锥的体积为( )ABCD11已知四棱锥,底面ABCD是边长为1的正方形,平面平面ABCD,当点
4、C到平面ABE的距离最大时,该四棱锥的体积为( )ABCD112我国古代数学家秦九韶在数书九章中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设,若函数有大于零的极值点,则实数的取值范围是_14已知直角坐标系中起点为坐标原点的向量满足,且,存在,对于任意的实数,不等式,则实数的取值范围是_.15连续2次抛掷一颗质地均匀的骰子(六个面上分别标有数字1,2,3,4,5,6的正方体),观察向上的点数,则事件“点数之积是3的倍数”的概率为_16若双曲线的两条渐近线斜率分别为,若
5、,则该双曲线的离心率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知ABC三内角A、B、C所对边的长分别为a,b,c,且3sin2A+3sin2B4sinAsinB+3sin2C(1)求cosC的值;(2)若a3,c,求ABC的面积18(12分)已知椭圆经过点,离心率为(1)求椭圆的方程;(2)经过点且斜率存在的直线交椭圆于两点,点与点关于坐标原点对称连接求证:存在实数,使得成立19(12分)已知椭圆的焦距为2,且过点(1)求椭圆的方程;(2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点,()证明:平分线段(其中为坐标原点);()当取最小值时,求
6、点的坐标20(12分)已知函数(1)当时,求不等式的解集;(2)的图象与两坐标轴的交点分别为,若三角形的面积大于,求参数的取值范围.21(12分)记函数的最小值为.(1)求的值;(2)若正数,满足,证明:.22(10分)已知函数.(1)证明:当时,;(2)若函数只有一个零点,求正实数的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】使用不同方法用表示出,结合平面向量的基本定理列出方程解出【详解】解:,又解得,所以故选:D【点睛】本题考查了平面向量的基本定理及其意义,属于基础题2A【解析】化简得到,再利用二项式定理展开
7、得到答案.【详解】展开式中的项为.故选:【点睛】本题考查了二项式定理,意在考查学生的计算能力.3A【解析】先由题和抛物线的性质求得点P的坐标和双曲线的半焦距c的值,再利用双曲线的定义可求得a的值,即可求得离心率.【详解】由题意知,抛物线焦点F1,0,准线与x轴交点F(-1,0),双曲线半焦距c=1,设点Q(-1,y) FPQ是以点P为直角顶点的等腰直角三角形,即PF=PQ,结合P点在抛物线上,所以PQ抛物线的准线,从而PFx轴,所以P1,2,2a=PF-PF=22-2 即a=2-1.故双曲线的离心率为e=12-1=2+1.故选A【点睛】本题考查了圆锥曲线综合,分析题目,画出图像,熟悉抛物线性质
8、以及双曲线的定义是解题的关键,属于中档题.4D【解析】讨论,三种情况,求导得到单调区间,画出函数图像,根据图像得到答案.【详解】当时,故,函数在上单调递增,在上单调递减,且;当时,;当时,函数单调递减;如图所示画出函数图像,则,故.故选:.【点睛】本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.5D【解析】ABD可通过统计图直接分析得出结论,C可通过计算中位数判断选项是否正确.【详解】A由统计图可知:2014年入境游客万人次最少,故正确;B由统计图可知:后4年我国入境游客万人次呈逐渐增加趋势,故正确;C入境游客万人次的中位数应为与的平均数,大于万次,故正确;D由统计图可知
9、:前年的入境游客万人次相比于后年的波动更大,所以对应的方差更大,故错误.故选:D.【点睛】本题考查统计图表信息的读取以及对中位数和方差的理解,难度较易.处理问题的关键是能通过所给统计图,分析出对应的信息,对学生分析问题的能力有一定要求.6B【解析】对函数化简可得,进而结合三角函数的最值、周期性、单调性、零点、对称性及平移变换,对四个命题逐个分析,可选出答案.【详解】因为,所以周期.对于,因为,所以,即,故错误;对于,函数的图象向右平移个单位长度后得到的函数为,其图象关于轴对称,则,解得,故对任意整数,所以错误;对于,令,可得,则,因为,所以在上第1个零点,且,所以第7个零点,若存在第8个零点,
10、则,所以,即,解得,故正确;对于,因为,且,所以,解得,又,所以,故正确.故选:B.【点睛】本题考查三角函数的恒等变换,考查三角函数的平移变换、最值、周期性、单调性、零点、对称性,考查学生的计算求解能力与推理能力,属于中档题.7C【解析】根据空间中直线与平面、平面与平面位置关系相关定理依次判断各个选项可得结果.【详解】对于,当为内与垂直的直线时,不满足,错误;对于,设,则当为内与平行的直线时,但,错误;对于,由,知:,又,正确;对于,设,则当为内与平行的直线时,错误.故选:.【点睛】本题考查立体几何中线面关系、面面关系有关命题的辨析,考查学生对于平行与垂直相关定理的掌握情况,属于基础题.8C【
11、解析】利用等差通项,设出和,然后,直接求解即可【详解】令,则,.【点睛】本题考查等差数列的求和问题,属于基础题9B【解析】,故选B点睛:本题主要考查利用椭圆的简单性质及椭圆的定义. 求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系. 10D【解析】首先由题意得,当梯形的外接圆圆心为四棱锥的外接球球心时,外接球的半径最小,通过图形发现,的中点即为梯形的外接圆圆心,也即四棱锥的外接球球心,则可得到,进而可根据四棱锥的体积公式求出体积.【详解】如图,四边形为等腰梯形,则其必
12、有外接圆,设为梯形的外接圆圆心,当也为四棱锥的外接球球心时,外接球的半径最小,也就使得外接球的表面积最小,过作的垂线交于点,交于点,连接,点必在上,、分别为、的中点,则必有,即为直角三角形.对于等腰梯形,如图:因为是等边三角形,、分别为、的中点,必有,所以点为等腰梯形的外接圆圆心,即点与点重合,如图,所以四棱锥底面的高为,.故选:D.【点睛】本题考查四棱锥的外接球及体积问题,关键是要找到外接球球心的位置,这个是一个难点,考查了学生空间想象能力和分析能力,是一道难度较大的题目.11B【解析】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面A
13、BE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.【详解】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面平面ABCD,所以平面ABCD,所以.因为底面ABCD是边长为1的正方形,所以.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.易证平面平面ABE,所以点H到平面ABE的距离,即为H到EF的距离.不妨设,则,.因为,所以,所以,当时,等号成立.此时EH与ED重合,所以,.故选:B.【点睛】本题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用.12A【解析】根据,利用
14、正弦定理边化为角得,整理为,根据,得,再由余弦定理得,又,代入公式求解.【详解】由得,即,即,因为,所以,由余弦定理,所以,由的面积公式得故选:A【点睛】本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】先求导数,求解导数为零的根,结合根的分布求解.【详解】因为,所以,令得,因为函数有大于0的极值点,所以,即.【点睛】本题主要考查利用导数研究函数的极值点问题,极值点为导数的变号零点,侧重考查转化化归思想.14【解析】由题意可设,由向量的坐标运算,以及恒成立思想可设,的最小值即为点,到直线的距离,求得,可得
15、不大于【详解】解:,且,可设,可得,可得的终点均在直线上,由于为任意实数,可得时,的最小值即为点到直线的距离,可得,对于任意的实数,不等式,可得,故答案为:【点睛】本题主要考查向量的模的求法,以及两点的距离的运用,考查直线方程的运用,以及点到直线的距离,考查运算能力,属于中档题15【解析】总事件数为,目标事件:当第一颗骰子为1,2,4,6,具体事件有,共8种;当第一颗骰子为3,6,则第二颗骰子随便都可以,则有种;所以目标事件共20中,所以。162【解析】由题得,再根据求解即可.【详解】双曲线的两条渐近线为,可令,则,所以,解得.故答案为:2.【点睛】本题考查双曲线渐近线求离心率的问题.属于基础
16、题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)或【解析】(1)利用正弦定理对已知代数式化简,根据余弦定理求解余弦值;(2)根据余弦定理求出b1或b3,结合面积公式求解.【详解】(1)已知等式3sin2A+3sin2B4sinAsinB+3sin2C,利用正弦定理化简得:3a2+3b23c24ab,即a2+b2c2ab,cosC;(2)把a3,c,代入3a2+3b23c24ab得:b1或b3,cosC,C为三角形内角,sinC,SABCabsinC3bb,则ABC的面积为或【点睛】此题考查利用正余弦定理求解三角形,关键在于熟练掌握正弦定理进行边角互化,利用余
17、弦定理求解边长,根据面积公式求解面积.18(1)(2)证明见解析【解析】(1)由点可得,由,根据即可求解;(2)设直线的方程为,联立可得,设,由韦达定理可得,再根据直线的斜率公式求得;由点B与点Q关于原点对称,可设,可求得,则,即可求证.【详解】解:(1)由题意可知,又,得,所以椭圆的方程为(2)证明:设直线的方程为,联立,可得,设,则有,因为,所以,又因为点B与点Q关于原点对称,所以,即,则有,由点在椭圆上,得,所以,所以,即,所以存在实数,使成立【点睛】本题考查椭圆的标准方程,考查直线的斜率公式的应用,考查运算能力.19(1)(2)()见解析()点的坐标为【解析】(1)由题意得,再由的关系
18、求出,即可得椭圆的标准方程;(2)(i)设,的中点为,设直线的方程为,代入椭圆方程中,运用根与系数的关系和中点坐标公式,结合三点共线的方法:斜率相等,即可得证;(ii)利用两点间的距离公式及弦长公式将表示出来,由换元法的对勾函数的单调性,可得取最小值时的条件获得等量关系,从而确定点的坐标.【详解】解:(1)由题意得, ,所以,所以椭圆方程为(2)设, 的中点为,()证明:由,可设直线的方程为,代入椭圆方程,得,所以,所以,则直线的斜率为,因为,所以,所以三点共线,所以平分线段;(ii)由两点间的距离公式得由弦长公式得 所以,令,则,由在上递增,可得,即时,取得最小值4,所以当取最小值时,点的坐
19、标为【点睛】此题考那可是椭圆方程和性质,主要考查椭圆方程的运用,运用根与系数的关系和中点坐标公式,同时考查弦长公式,属于较难题.20(1)(2)【解析】(1)当时,不等式可化为:,再利用绝对值的意义,分,讨论求解.(2)根据可得,得到函数的图象与两坐标轴的交点坐标分别为,再利用三角形面积公式由求解.【详解】(1)当时,不等式可化为:当时,不等式化为,解得:当时,不等式化为,解得:,当时,不等式化为解集为,综上,不等式的解集为.(2)由题得,所以函数的图象与两坐标轴的交点坐标分别为,的面积为,由,得(舍),或,所以,参数的取值范围是.【点睛】本题主要考查绝对值不等式的解法和绝对值函数的应用,还考查分类讨论的思想和运算求解的能力,属于中档题.21(1)(2)证明见解析【解析】(1)将函数转化为分段函数或利用绝对值三角不等式进行求解;(2)利用基本不等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025建筑外墙涂料施工合同2
- 2025商业店铺买卖合同协议范本
- 2025天津全日制用工劳动合同
- 《评估你的品德》课件
- 洛阳师范学院《高等混凝土结构理论及应用》2023-2024学年第二学期期末试卷
- 天津石油职业技术学院《中古文学经典鉴赏》2023-2024学年第一学期期末试卷
- 伊春职业学院《建筑空间设计》2023-2024学年第二学期期末试卷
- 天津和平区天津市双菱中学2025届初三下学期语文试题模拟试题含解析
- 台州职业技术学院《动物分子生物技术》2023-2024学年第二学期期末试卷
- 沈阳化工大学《岭南文化》2023-2024学年第一学期期末试卷
- T-CITSA 20-2022 道路交叉路口交通信息全息采集系统通用技术条件
- 护士行为规范及护理核心制度
- 在核心素养指导下高中主题班会课的作用
- 中石化在线测评题库
- 跨学科护理合作模式
- 护理临床带教老师
- 当妈是一种修行
- 机械设备润滑油基础知识(二)
- 妇幼保健院灾害脆弱性分析表
- 管理能力测试题大全
- 血锂异常健康宣教
评论
0/150
提交评论