版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡
2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若成立,则的最小值为( )A0B4CD2执行如图的程序框图,若输出的结果,则输入的值为( )ABC3或D或3若,则下列关系式正确的个数是( ) A1B2C3D44设复数满足,在复平面内对应的点为,则( )ABCD5已知向量与的夹角为,定义为与的“向量积”,且是一个向量,它的长度,若,则( )ABC6D6方程的实数根叫作函数的“新驻点”,如果函数的“新驻点”为,那么满足( )ABCD7集合,则( )ABCD8在中,为边上的中线,为的中点,且,则( )ABCD9函数的值域为(
3、 )ABCD10费马素数是法国大数学家费马命名的,形如的素数(如:)为费马索数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是()ABCD11已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是( )ABCD12若函数在时取得极值,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知中,点是边的中点,的面积为,则线段的取值范围是_.14如图所示,在ABC中,AB=AC=2,AE的延长线交BC边于点F,若,则_.15已知函数,在区间上随机取一个数,则使得0的概率为 16在四面体中,与都是边长为
4、2的等边三角形,且平面平面,则该四面体外接球的体积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量 (件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲; 乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个
5、,求“理想数据”的个数为的概率.18(12分)已知函数(1)解不等式;(2)若函数存在零点,求的求值范围19(12分)已知函数(1)若,求证:(2)若,恒有,求实数的取值范围.20(12分)设函数.(1)时,求的单调区间;(2)当时,设的最小值为,若恒成立,求实数t的取值范围.21(12分)某工厂为提高生产效率,需引进一条新的生产线投入生产,现有两条生产线可供选择,生产线:有A,B两道独立运行的生产工序,且两道工序出现故障的概率依次是0.02,0.03.若两道工序都没有出现故障,则生产成本为15万元;若A工序出现故障,则生产成本增加2万元;若B工序出现故障,则生产成本增加3万元;若A,B两道工
6、序都出现故障,则生产成本增加5万元.生产线:有a,b两道独立运行的生产工序,且两道工序出现故障的概率依次是0.04,0.01.若两道工序都没有出现故障,则生产成本为14万元;若a工序出现故障,则生产成本增加8万元;若b工序出现故障,则生产成本增加5万元;若a,b两道工序都出现故障,则生产成本增加13万元.(1)若选择生产线,求生产成本恰好为18万元的概率;(2)为最大限度节约生产成本,你会给工厂建议选择哪条生产线?请说明理由.22(10分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中
7、随机抽取10天的数据,整理如下:甲公司员工:410,390,330,360,320,400,330,340,370,350乙公司员工:360,420,370,360,420,340,440,370,360,420每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数;(2)为了解乙公司员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为 (单位:元),求的分布列和数学期望;(3)根据题中数据估算
8、两公司被抽取员工在该月所得的劳务费.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】令,进而求得,再转化为函数的最值问题即可求解.【详解】(),令:,在上增,且,所以在上减,在上增,所以,所以的最小值为0.故选:A【点睛】本题主要考查了导数在研究函数最值中的应用,考查了转化的数学思想,恰当的用一个未知数来表示和是本题的关键,属于中档题.2D【解析】根据逆运算,倒推回求x的值,根据x的范围取舍即可得选项.【详解】因为,所以当,解得,所以3是输入的x的值;当时,解得,所以是输入的x的值,所以输入的x的值为或3,故选:D.【点
9、睛】本题考查了程序框图的简单应用,通过结果反求输入的值,属于基础题.3D【解析】a,b可看成是与和交点的横坐标,画出图象,数形结合处理.【详解】令,作出图象如图,由,的图象可知,正确;,有,正确;,有,正确;,有,正确.故选:D.【点睛】本题考查利用函数图象比较大小,考查学生数形结合的思想,是一道中档题.4B【解析】设,根据复数的几何意义得到、的关系式,即可得解;【详解】解:设,解得.故选:B【点睛】本题考查复数的几何意义的应用,属于基础题.5D【解析】先根据向量坐标运算求出和,进而求出,代入题中给的定义即可求解.【详解】由题意,则,得,由定义知,故选:D.【点睛】此题考查向量的坐标运算,引入
10、新定义,属于简单题目.6D【解析】由题设中所给的定义,方程的实数根叫做函数的“新驻点”,根据零点存在定理即可求出的大致范围【详解】解:由题意方程的实数根叫做函数的“新驻点”,对于函数,由于,设,该函数在为增函数, ,在上有零点,故函数的“新驻点”为,那么故选:【点睛】本题是一个新定义的题,理解定义,分别建立方程解出存在范围是解题的关键,本题考查了推理判断的能力,属于基础题.7A【解析】计算,再计算交集得到答案.【详解】,故.故选:.【点睛】本题考查了交集运算,属于简单题.8A【解析】根据向量的线性运算可得,利用及,计算即可.【详解】因为,所以,所以,故选:A【点睛】本题主要考查了向量的线性运算
11、,向量数量积的运算,向量数量积的性质,属于中档题.9A【解析】由计算出的取值范围,利用正弦函数的基本性质可求得函数的值域.【详解】,因此,函数的值域为.故选:A.【点睛】本题考查正弦型函数在区间上的值域的求解,解答的关键就是求出对象角的取值范围,考查计算能力,属于基础题.10B【解析】基本事件总数,能表示为两个不同费马素数的和只有,共有个,根据古典概型求出概率【详解】在不超过的正偶数中随机选取一数,基本事件总数能表示为两个不同费马素数的和的只有,共有个则它能表示为两个不同费马素数的和的概率是本题正确选项:【点睛】本题考查概率的求法,考查列举法解决古典概型问题,是基础题11B【解析】由可得;由过
12、点所作的圆的两条切线互相垂直可得,又焦点到双曲线渐近线的距离为,则,进而求解.【详解】,所以离心率,又圆是以为圆心,半径的圆,要使得经过点所作的圆的两条切线互相垂直,必有,而焦点到双曲线渐近线的距离为,所以,即,所以,所以双曲线的离心率的取值范围是.故选:B【点睛】本题考查双曲线的离心率的范围,考查双曲线的性质的应用.12D【解析】对函数求导,根据函数在时取得极值,得到,即可求出结果.【详解】因为,所以,又函数在时取得极值,所以,解得.故选D【点睛】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13【解析】设,利用正弦定理,根
13、据,得到,再利用余弦定理得,平方相加得:,转化为 有解问题求解.【详解】设,所以, 即由余弦定理得,即 ,平方相加得:,即 ,令,设 ,在上有解,所以 ,解得,即 ,故答案为:【点睛】本题主要考查正弦定理和余弦定理在平面几何中的应用,还考查了运算求解的能力,属于难题.14【解析】过点做,可得,由可得,可得,代入可得答案.【详解】解:如图,过点做,易得:,故,可得:,同理:,可得,由,可得,可得:,可得:,,故答案为:.【点睛】本题主要考查平面向量的线性运算和平面向量的数量积,由题意作出是解题的关键.15【解析】试题分析:可以得出,所以在区间上使的范围为,所以使得0的概率为考点:本小题主要考查与
14、长度有关的几何概型的概率计算.点评:几何概型适用于解决一切均匀分布的问题,包括“长度”、“角度”、“面积”、“体积”等,但要注意求概率时做比的上下“测度”要一致.16【解析】先确定球心的位置,结合勾股定理可求球的半径,进而可得球的面积.【详解】取的外心为,设为球心,连接,则平面,取的中点,连接,过做于点,易知四边形为矩形,连接,设,.连接,则,三点共线,易知,所以,.在和中,即,所以,得.所以.【点睛】本题主要考查几何体的外接球问题,外接球的半径的求解一般有两个思路:一是确定球心位置,利用勾股定理求解半径;二是利用熟悉的模型求解半径,比如长方体外接球半径是其对角线的一半.三、解答题:共70分。
15、解答应写出文字说明、证明过程或演算步骤。17(1)乙同学正确;(2).【解析】(1)根据变量且有线性负相关关系判断甲不正确.根据回归直线方程过样本中心点,判断出乙正确.(2)由线性回归方程得到的估计数据,计算出误差,求得“理想数据”的个数,由此利用古典概型概率计算公式,求得所求概率.【详解】(1)已知变量具有线性负相关关系,故甲不正确,代入两个回归方程,验证乙同学正确,故回归方程为:(2)由(1)得到的回归方程,计算估计数据如下表:021212由上表可知,“理想数据”的个数为.用列举法可知,从个不同数据里抽出个不同数据的方法有种.从符合条件的个不同数据中抽出个,还要在不符合条件的个不同数据中抽
16、出个的方法有种.故所求概率为【点睛】本小题主要考查回归直线方程的判断,考查古典概型概率计算,考查数据处理能力,属于中档题.18(1)或 ;(2)【解析】(1)通过讨论的范围,将绝对值符号去掉,转化为求不等式组的解集,之后取并集,得到原不等式的解集;(2)将函数零点问题转化为曲线交点问题解决,数形结合得到结果.【详解】(1)有题不等式可化为,当时,原不等式可化为,解得;当时,原不等式可化为,解得,不满足,舍去;当时,原不等式可化为,解得,所以不等式的解集为(2)因为,所以若函数存在零点则可转化为函数与的图像存在交点,函数在上单调增,在上单调递减,且.数形结合可知【点睛】该题考查的是有关不等式的问
17、题,涉及到的知识点有分类讨论求绝对值不等式的解集,将零点问题转化为曲线交点的问题来解决,数形结合思想的应用,属于简单题目.19(1)见解析;(2)(,0【解析】(1)利用导数求x0时,f(x)的极大值为,即证(2)等价于k,x0,令g(x),x0,再求函数g(x)的最小值得解.【详解】(1)函数f(x)x2e3x,f(x)2xe3x+3x2e3xx(3x+2)e3x由f(x)0,得x或x0;由f(x)0,得,f(x)在(,)内递增,在(,0)内递减,在(0,+)内递增,f(x)的极大值为,当x0时,f(x)(2)x2e3x(k+3)x+2lnx+1,k,x0,令g(x),x0,则g(x),令h
18、(x)x2(1+3x)e3x+2lnx1,则h(x)在(0,+)上单调递增,且x0+时,h(x),h(1)4e310,存在x0(0,1),使得h(x0)0,当x(0,x0)时,g(x)0,g(x)单调递减,当x(x0,+)时,g(x)0,g(x)单调递增,g(x)在(0,+)上的最小值是g(x0),h(x0)+2lnx01=0,所以,令,令所以=1,,g(x0) 实数k的取值范围是(,0【点睛】本题主要考查利用证明不等式,考查利用导数求最值和解答不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.20(1)的增区间为,减区间为;(2).【解析】(1)求出函数的导数,由于参数
19、的范围对导数的符号有影响,对参数分类,再研究函数的单调区间;(2)由(1)的结论,求出的表达式,由于恒成立,故求出的最大值,即得实数的取值范围的左端点【详解】解:(1)解:, 当时,解得的增区间为,解得的减区间为. (2)解:若,由得,由得,所以函数的减区间为,增区间为;, 因为,所以,令,则恒成立,由于,当时,故函数在上是减函数,所以成立; 当时,若则,故函数在上是增函数,即对时,与题意不符;综上,为所求【点睛】本题考查导数在最大值与最小值问题中的应用,求解本题关键是根据导数研究出函数的单调性,由最值的定义得出函数的最值,本题中第一小题是求出函数的单调区间,第二小题是一个求函数的最值的问题,此类题运算量较大,转化灵活,解题时极易因为变形与运算出错,故做题时要认真仔细21(1)0.0294.(2)应选生产线.见解析【解析】(1)由题意转化条件得A工序不出现故障B工序出现故障,利用相互独立事件的概率公式即可得解;(2)分别算出两个生产线增加的生产成本的期望,进而求出两个生产线的生产成本期望值,比较期望值即可得解.【详解】(1)若选择生产线,生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环氧树脂装置操作工安全宣教竞赛考核试卷含答案
- 铸造模型工岗前设备考核试卷含答案
- 水龙头及卫浴配件制作工QC管理考核试卷含答案
- 飞机仪表电气系统装调工岗前品质考核试卷含答案
- 食品饮料行业专题研究报告:前瞻2026如何判断魔芋零食的持续性
- 病毒性疫苗生产工复测模拟考核试卷含答案
- 多工序数控机床操作调整工安全专项评优考核试卷含答案
- 铅笔制造工操作评估评优考核试卷含答案
- 图书馆罚款和补偿规定制度
- 值班的管理制度
- 新疆维吾尔自治区普通高中2026届高二上数学期末监测试题含解析
- 2026年辽宁金融职业学院单招职业技能测试题库附答案解析
- 2026北京海淀初三上学期期末语文试卷和答案
- 2024-2025学年北京市东城区五年级(上)期末语文试题(含答案)
- 人工智能在医疗领域的应用
- 2025年广东省茂名农垦集团公司招聘笔试题库附带答案详解
- 【10篇】新部编五年级上册语文课内外阅读理解专项练习题及答案
- 南京市雨花台区医疗保险管理中心等单位2025年公开招聘编外工作人员备考题库有完整答案详解
- 矿业企业精益管理实施方案与案例
- 2026年共青团中央所属事业单位社会人员公开招聘18人备考题库及答案详解(新)
- 2026年宁夏贺兰工业园区管委会工作人员社会化公开招聘备考题库带答案详解
评论
0/150
提交评论