版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线的右焦点为,过的直线交双曲线的渐近线于两点,且直线的倾斜角是渐近线倾斜角的2倍,若,则该双曲线的离心率为( )ABCD2已知三棱锥中,为的中点,平面,则有下列四个结论:若为
2、的外心,则;若为等边三角形,则;当时,与平面所成的角的范围为;当时,为平面内一动点,若OM平面,则在内轨迹的长度为1其中正确的个数是( )A1B1C3D43中国古代数学名著九章算术中记载了公元前344年商鞅督造的一种标准量器商鞅铜方升,其三视图如图所示(单位:寸),若取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x的值为( ) A3B3.4C3.8D44执行如图所示的程序框图,则输出的结果为( )ABCD5设过定点的直线与椭圆:交于不同的两点,若原点在以为直径的圆的外部,则直线的斜率的取值范围为( )ABCD6如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点F,M分
3、别在线段AC,BD1(不包含端点)上运动,则( )A在点F的运动过程中,存在EF/BC1B在点M的运动过程中,不存在B1MAEC四面体EMAC的体积为定值D四面体FA1C1B的体积不为定值7已知集合,集合,若,则( )ABCD8某设备使用年限x(年)与所支出的维修费用y(万元)的统计数据分别为,由最小二乘法得到回归直线方程为,若计划维修费用超过15万元将该设备报废,则该设备的使用年限为( )A8年B9年C10年D11年9设,均为非零的平面向量,则“存在负数,使得”是“”的A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件10点在所在的平面内,且,则( )ABCD11已知数列,是首
4、项为8,公比为得等比数列,则等于( )A64B32C2D412设m,n为直线,、为平面,则的一个充分条件可以是( )A,B,C,D,二、填空题:本题共4小题,每小题5分,共20分。13若函数的图像向左平移个单位得到函数的图像.则在区间上的最小值为_.14若变量x,y满足:,且满足,则参数t的取值范围为_.15已知复数z是纯虚数,则实数a_,|z|_16如图是一个算法的伪代码,运行后输出的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在极坐标系中,直线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为(为参数),求直线与曲线的交
5、点的直角坐标.18(12分)过点作倾斜角为的直线与曲线(为参数)相交于M、N两点(1)写出曲线C的一般方程;(2)求的最小值19(12分)唐诗是中国文学的瑰宝.为了研究计算机上唐诗分类工作中检索关键字的选取,某研究人员将唐诗分成7大类别,并从全唐诗48900多篇唐诗中随机抽取了500篇,统计了每个类别及各类别包含“花”、“山”、“帘”字的篇数,得到下表:爱情婚姻咏史怀古边塞战争山水田园交游送别羁旅思乡其他总计篇数100645599917318500含“山”字的篇数5148216948304271含“帘”字的篇数2120073538含“花”字的篇数606141732283160(1)根据上表判断
6、,若从全唐诗含“山”字的唐诗中随机抽取一篇,则它属于哪个类别的可能性最大,属于哪个类别的可能性最小,并分别估计该唐诗属于这两个类别的概率;(2)已知检索关键字的选取规则为:若有超过95%的把握判断“某字”与“某类别”有关系,则“某字”为“某类别”的关键字;若“某字”被选为“某类别”关键字,则由其对应列联表得到的的观测值越大,排名就越靠前;设“山”“帘”“花”和“爱情婚姻”对应的观测值分别为,.已知,请完成下面列联表,并从上述三个字中选出“爱情婚姻”类别的关键字并排名.属于“爱情婚姻”类不属于“爱情婚姻”类总计含“花”字的篇数不含“花”的篇数总计附:,其中.0.050.0250.0103.841
7、5.0246.63520(12分)为了拓展城市的旅游业,实现不同市区间的物资交流,政府决定在市与市之间建一条直达公路,中间设有至少8个的偶数个十字路口,记为,现规划在每个路口处种植一颗杨树或者木棉树,且种植每种树木的概率均为.(1)现征求两市居民的种植意见,看看哪一种植物更受欢迎,得到的数据如下所示:A市居民B市居民喜欢杨树300200喜欢木棉树250250是否有的把握认为喜欢树木的种类与居民所在的城市具有相关性;(2)若从所有的路口中随机抽取4个路口,恰有个路口种植杨树,求的分布列以及数学期望;(3)在所有的路口种植完成后,选取3个种植同一种树的路口,记总的选取方法数为,求证:.附:0.10
8、00.0500.0100.0012.7063.8416.63510.82821(12分)为践行“绿水青山就是金山银山”的发展理念和提高生态环境的保护意识,高二年级准备成立一个环境保护兴趣小组.该年级理科班有男生400人,女生200人;文科班有男生100人,女生300人.现按男、女用分层抽样从理科生中抽取6人,按男、女分层抽样从文科生中抽取4人,组成环境保护兴趣小组,再从这10人的兴趣小组中抽出4人参加学校的环保知识竞赛.(1)设事件为“选出的这4个人中要求有两个男生两个女生,而且这两个男生必须文、理科生都有”,求事件发生的概率;(2)用表示抽取的4人中文科女生的人数,求的分布列和数学期望.22
9、(10分)已知函数,设的最小值为m.(1)求m的值;(2)是否存在实数a,b,使得,?并说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】先求出直线l的方程为y(xc),与yx联立,可得A,B的纵坐标,利用,求出a,b的关系,即可求出该双曲线的离心率【详解】双曲线1(ab0)的渐近线方程为yx,直线l的倾斜角是渐近线OA倾斜角的2倍,kl,直线l的方程为y(xc),与yx联立,可得y或y,2,ab,c2b,e故选B【点睛】本题考查双曲线的简单性质,考查向量知识,考查学生的计算能力,属于中档题2C【解析】由线面垂直
10、的性质,结合勾股定理可判断正确; 反证法由线面垂直的判断和性质可判断错误;由线面角的定义和转化为三棱锥的体积,求得C到平面PAB的距离的范围,可判断正确;由面面平行的性质定理可得线面平行,可得正确.【详解】画出图形:若为的外心,则,平面,可得,即,正确;若为等边三角形,又可得平面,即,由可得,矛盾,错误;若,设与平面所成角为可得,设到平面的距离为由可得即有,当且仅当取等号.可得的最大值为, 即的范围为,正确;取中点,的中点,连接由中位线定理可得平面平面可得在线段上,而,可得正确;所以正确的是:故选:C【点睛】此题考查立体几何中与点、线、面位置关系有关的命题的真假判断,处理这类问题,可以用已知的
11、定理或性质来证明,也可以用反证法来说明命题的不成立.属于一般性题目.3D【解析】根据三视图即可求得几何体表面积,即可解得未知数.【详解】由图可知,该几何体是由一个长宽高分别为和一个底面半径为,高为的圆柱组合而成.该几何体的表面积为,解得,故选:D.【点睛】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.4D【解析】循环依次为 直至结束循环,输出,选D.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求
12、项.5D【解析】设直线:,由原点在以为直径的圆的外部,可得,联立直线与椭圆方程,结合韦达定理,即可求得答案.【详解】显然直线不满足条件,故可设直线:,由,得,解得或,解得,直线的斜率的取值范围为.故选:D.【点睛】本题解题关键是掌握椭圆的基础知识和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式,考查了分析能力和计算能力,属于中档题6C【解析】采用逐一验证法,根据线线、线面之间的关系以及四面体的体积公式,可得结果.【详解】A错误由平面,/而与平面相交,故可知与平面相交,所以不存在EF/BC1B错误,如图,作由又平面,所以平面又平面,所以由/,所以,平面所
13、以平面,又平面所以,所以存在C正确四面体EMAC的体积为其中为点到平面的距离,由/,平面,平面所以/平面,则点到平面的距离即点到平面的距离,所以为定值,故四面体EMAC的体积为定值错误由/,平面,平面所以/平面,则点到平面的距离即为点到平面的距离,所以为定值所以四面体FA1C1B的体积为定值故选:C【点睛】本题考查线面、线线之间的关系,考验分析能力以及逻辑推理能力,熟练线面垂直与平行的判定定理以及性质定理,中档题.7A【解析】根据或,验证交集后求得的值.【详解】因为,所以或.当时,不符合题意,当时,.故选A.【点睛】本小题主要考查集合的交集概念及运算,属于基础题.8D【解析】根据样本中心点在回
14、归直线上,求出,求解,即可求出答案.【详解】依题意在回归直线上,由,估计第年维修费用超过15万元.故选:D.【点睛】本题考查回归直线过样本中心点、以及回归方程的应用,属于基础题.9B【解析】根据充分条件、必要条件的定义进行分析、判断后可得结论【详解】因为,均为非零的平面向量,存在负数,使得,所以向量,共线且方向相反,所以,即充分性成立;反之,当向量,的夹角为钝角时,满足,但此时,不共线且反向,所以必要性不成立所以“存在负数,使得”是“”的充分不必要条件故选B【点睛】判断p是q的什么条件,需要从两方面分析:一是由条件p能否推得条件q;二是由条件q能否推得条件p,定义法是判断充分条件、必要条件的基
15、本的方法,解题时注意选择恰当的方法判断命题是否正确10D【解析】确定点为外心,代入化简得到,再根据计算得到答案.【详解】由可知,点为外心,则,又,所以因为,联立方程可得,因为,所以,即故选:【点睛】本题考查了向量模长的计算,意在考查学生的计算能力.11A【解析】根据题意依次计算得到答案.【详解】根据题意知:,故,.故选:.【点睛】本题考查了数列值的计算,意在考查学生的计算能力.12B【解析】根据线面垂直的判断方法对选项逐一分析,由此确定正确选项.【详解】对于A选项,当,时,由于不在平面内,故无法得出.对于B选项,由于,所以.故B选项正确.对于C选项,当,时,可能含于平面,故无法得出.对于D选项
16、,当,时,无法得出.综上所述,的一个充分条件是“,”故选:B【点睛】本小题主要考查线面垂直的判断,考查充分必要条件的理解,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】注意平移是针对自变量x,所以,再利用整体换元法求值域(最值)即可.【详解】由已知,又,故,所以的最小值为.故答案为:.【点睛】本题考查正弦型函数在给定区间上的最值问题,涉及到图象的平移变换、辅助角公式的应用,是一道基础题.14【解析】根据变量x,y满足:,画出可行域,由,解得直线过定点,直线绕定点旋转与可行域有交点即可,再结合图象利用斜率求解.【详解】由变量x,y满足:,画出可行域如图所示阴影部分,由,
17、整理得,由,解得,所以直线过定点,由,解得,由,解得,要使,则与可行域有交点,当时,满足条件,当时,直线得斜率应该不小于AC,而不大于AB,即或,解得,且,综上:参数t的取值范围为.故答案为:【点睛】本题主要考查线性规划的应用,还考查了转化运算求解的能力,属于中档题.151 1 【解析】根据复数运算法则计算复数z,根据复数的概念和模长公式计算得解.【详解】复数z,复数z是纯虚数,解得a1,zi,|z|1,故答案为:1,1【点睛】此题考查复数的概念和模长计算,根据复数是纯虚数建立方程求解,计算模长,关键在于熟练掌握复数的运算法则.1613【解析】根据题意得到:a=0,b=1,i=2A=1,b=2
18、,i=4,A=3,b=5,i=6,A=8,b=13,i=8不满足条件,故得到此时输出的b值为13.故答案为13.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17【解析】将直线的极坐标方程和曲线的参数方程分别化为直角坐标方程,联立直角坐标方程求出交点坐标,结合的取值范围进行取舍即可.【详解】因为直线的极坐标方程为,所以直线的普通方程为,又因为曲线的参数方程为(为参数),所以曲线的直角坐标方程为, 联立方程,解得或,因为,所以舍去,故点的直角坐标为.【点睛】本题考查极坐标方程、参数方程与直角坐标方程的互化;考查运算求解能力;熟练掌握极坐标方程、参数方程与直角坐标方程的互化公式是求
19、解本题的关键;属于中档题、常考题型.18(1);(2)【解析】(1)将曲线的参数方程消参得到普通方程;(2)写出直线MN的参数方程,将参数方程代入曲线方程,并将其化为一个关于的一元二次方程,根据,结合韦达定理和余弦函数的性质,即可求出的最小值.【详解】(1)由曲线C的参数方程(是参数),可得,即曲线C的一般方程为(2)直线MN的参数方程为(t为参数),将直线MN的参数方程代入曲线,得,整理得,设M,N对应的对数分别为,则,当时,取得最小值为【点睛】该题考查的是有关参数方程的问题,涉及到的知识点有参数方程向普通方程的转化,直线的参数方程的应用,属于简单题目.19(1)该唐诗属于“山水田园”类别的
20、可能性最大,属于“其他”类别的可能性最小;属于“山水田园”类别的概率约为;属于“其他”类别的概率约为(2)填表见解析;选择“花”,“帘”作为“爱情婚姻”类别的关键字,且排序为“花”,“帘”【解析】(1)根据统计图表算出频率,比较大小即可判断;(2)根据统计图表完成列联表,算出观测值,查表判断.【详解】(1)由上表可知,该唐诗属于“山水田园”类别的可能性最大,属于“其他”类别的可能性最小属于“山水田园”类别的概率约为;属于“其他”类别的概率约为;(2)列联表如下:属于“爱情婚姻”类不属于“爱情婚姻”类共计含“花”的篇数60100160不含“花”的篇数40300340共计100400500计算得:;因为,所以有超过95%的把握判断“花”字和“帘”字均与“爱情婚姻”有关系,故“花”和“帘”是“爱情婚姻”的关键字,而“山”不是;又因为,故选择“花”,“帘”作为“爱情婚姻”类别的关键字,且排序为“花”,“帘”.【点睛】本题主要考查统计图表、频率与概率的关系、用样本估计总体、独立性检验等知识点.考查了学生对统计图表的识读与计算能力,考查了学生的数据分析、数学运算等核心素养.20(1)没有(2)分布列见解析,(3)证明见解析【解析】(1)根据公式计算卡方值,再对应卡值表判断.(2)根据题意,随机变量的可能取值为0,1,2,3,4,分别求得概率,写出分布列,根据期望公式求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年宁夏体育职业学院高职单招职业适应性考试备考试题带答案解析
- 2026年智能制造数字主线项目投资计划书
- 城市更新中的文化遗产保护
- 2026年智能多功能训练椅项目评估报告
- 2026年江苏城市职业学院高职单招职业适应性考试模拟试题带答案解析
- 2026年马鞍山师范高等专科学校高职单招职业适应性考试参考题库带答案解析
- 2026年重庆移通学院单招职业技能笔试备考题库带答案解析
- 2026年济宁职业技术学院单招职业技能考试备考题库带答案解析
- 2026年运城幼儿师范高等专科学校高职单招职业适应性考试参考题库带答案解析
- 通信协议书运行速度
- 2025至2030中国细胞存储行业调研及市场前景预测评估报告
- 《中华人民共和国危险化学品安全法》解读
- 水暖施工员考试及答案
- 2025年省级行业企业职业技能竞赛(老人能力评估师)历年参考题库含答案
- 2025年淮北市相山区公开招考村(社区)后备干部66人备考题库及一套完整答案详解
- 道路桥梁全寿命周期管理技术研究与成本优化研究毕业答辩汇报
- 2024司法考试卷一《法律职业道德》真题及答案
- 2026年江西冶金职业技术学院单招职业适应性测试题库及参考答案详解1套
- 智能生产线实训系统
- 静脉治疗专科护士理论考试题含答案
- 培养员工的协议书
评论
0/150
提交评论