




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图所示的程序框图输出的是126,则应为( )ABCD2设复数满足(为虚数单位),则在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限3已知等式成立,则(
2、 )A0B5C7D134设复数满足,在复平面内对应的点的坐标为则()ABCD5已知双曲线(,),以点()为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为()ABCD6设正项等差数列的前项和为,且满足,则的最小值为A8B16C24D367设函数,的定义域都为,且是奇函数,是偶函数,则下列结论正确的是( )A是偶函数B是奇函数C是奇函数D是奇函数8已知函数,若曲线上始终存在两点,使得,且的中点在轴上,则正实数的取值范围为( )ABCD9设等差数列的前项和为,若,则( )A23B25C28D2910已知向量,若,则实数的值为( )ABCD11设是虚数单位,则( )ABC1D21
3、2ABC的内角A,B,C的对边分别为,已知,则为( )ABC或D或二、填空题:本题共4小题,每小题5分,共20分。13已知双曲线的左右焦点分别为,过的直线与双曲线左支交于两点,的内切圆的圆心的纵坐标为,则双曲线的离心率为_.14某高校组织学生辩论赛,六位评委为选手成绩打出分数的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则所剩数据的平均数与中位数的差为_.15已知是夹角为的两个单位向量,若,则与的夹角为_.16若向量与向量垂直,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)求不等式的解集;(2)若存在实数,使得不等式成立,求实数的取值范
4、围.18(12分)以坐标原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系19(12分)在锐角中,分别是角,所对的边,的面积,且满足,则的取值范围是( )ABCD20(12分)已知椭圆的左、右焦点分别为、,点在椭圆上,且.()求椭圆的标准方程;()设直线与椭圆相交于、两点,与圆相交于、两点,求的取值范围.21(12分)随着科技的发展,网络已逐渐融入了人们的生活网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)经常网购偶尔
5、或不用网购合计男性50100女性70100合计(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?(2)现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差参考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82822(10分)为了解网络外卖的发展情况,某调查机构从全国
6、各城市中抽取了100个相同等级地城市,分别调查了甲乙两家网络外卖平台(以下简称外卖甲、外卖乙)在今年3月的订单情况,得到外卖甲该月订单的频率分布直方图,外卖乙该月订单的频数分布表,如下图表所示.订单:(单位:万件) 频数1223订单:(单位:万件)频数402020102(1)现规定,月订单不低于13万件的城市为“业绩突出城市”,填写下面的列联表,并根据列联表判断是否有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.业绩突出城市业绩不突出城市总计外卖甲外卖乙总计(2)由频率分布直方图可以认为,外卖甲今年3月在全国各城市的订单数(单位:万件)近似地服从正态分布,其中近似为样本平均
7、数(同一组数据用该区间的中点值作代表),的值已求出,约为3.64,现把频率视为概率,解决下列问题:从全国各城市中随机抽取6个城市,记为外卖甲在今年3月订单数位于区间的城市个数,求的数学期望;外卖甲决定在今年3月订单数低于7万件的城市开展“订外卖,抢红包”的营销活动来提升业绩,据统计,开展此活动后城市每月外卖订单数将提高到平均每月9万件的水平,现从全国各月订单数不超过7万件的城市中采用分层抽样的方法选出100个城市不开展营销活动,若每按一件外卖订单平均可获纯利润5元,但每件外卖平均需送出红包2元,则外卖甲在这100个城市中开展营销活动将比不开展营销活动每月多盈利多少万元?附:参考公式:,其中.参
8、考数据:0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828若,则,.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】试题分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+2n的值,并输出满足循环的条件解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+2n的值,并输出满足循环的条件S=2+22+21=121,故中应填n1故选B点评:算法是新课程中的新增加的内容,
9、也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误2A【解析】由复数的除法运算可整理得到,由此得到对应的点的坐标,从而确定所处象限.【详解】由得:,对应的点的坐标为,位于第一象限.故选:.【点睛】本题考查复数对应的点所在象限的求解,涉及到复数的除法运算,属于基础题.3D【解析】根据等式和特征和所求代数式的值的特征用特殊值法进行求解即可.【详解】由可知:令,得;令,得;令,得,得,而,所以.故选:D【点睛】本题考查了二项式定理的应用,考查了特
10、殊值代入法,考查了数学运算能力.4B【解析】根据共轭复数定义及复数模的求法,代入化简即可求解.【详解】在复平面内对应的点的坐标为,则,代入可得,解得.故选:B.【点睛】本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题.5A【解析】求出双曲线的一条渐近线方程,利用圆与双曲线的一条渐近线交于两点,且,则可根据圆心到渐近线距离为列出方程,求解离心率【详解】不妨设双曲线的一条渐近线与圆交于,因为,所以圆心到的距离为:,即,因为,所以解得故选A【点睛】本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题对于离心率求解问题,关键是建立关于的齐次方程,主要有两个思
11、考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度,结合曲线方程的性质以及题目中的代数的关系建立方程.6B【解析】方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,则,当且仅当时等号成立,从而的最小值为16,故选B方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B7C【解析】根据函数奇偶性的性质即可得到结论【详解】解:是奇函数,是偶函数,故函数是奇函数,故错误,为偶函数,故错误,是奇函数,故正确为偶函数,故错误,故选:【点睛】本题主要考查函数奇偶性的
12、判断,根据函数奇偶性的定义是解决本题的关键8D【解析】根据中点在轴上,设出两点的坐标,().对分成三类,利用则,列方程,化简后求得,利用导数求得的值域,由此求得的取值范围.【详解】根据条件可知,两点的横坐标互为相反数,不妨设,(),若,则,由,所以,即,方程无解;若,显然不满足;若,则,由,即,即,因为,所以函数在上递减,在上递增,故在处取得极小值也即是最小值,所以函数在上的值域为,故.故选D.【点睛】本小题主要考查平面平面向量数量积为零的坐标表示,考查化归与转化的数学思想方法,考查利用导数研究函数的最小值,考查分析与运算能力,属于较难的题目.9D【解析】由可求,再求公差,再求解即可.【详解】
13、解:是等差数列,又,公差为,故选:D【点睛】考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题.10D【解析】由两向量垂直可得,整理后可知,将已知条件代入后即可求出实数的值.【详解】解:,即,将和代入,得出,所以.故选:D.【点睛】本题考查了向量的数量积,考查了向量的坐标运算.对于向量问题,若已知垂直,通常可得到两个向量的数量积为0,继而结合条件进行化简、整理.11C【解析】由,可得,通过等号左右实部和虚部分别相等即可求出的值.【详解】解:, ,解得:.故选:C.【点睛】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把 当成进行运算.12D【解析】由正弦定
14、理可求得,再由角A的范围可求得角A.【详解】由正弦定理可知,所以,解得,又,且,所以或。故选:D.【点睛】本题主要考查正弦定理,注意角的范围,是否有两解的情况,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。132【解析】由题意画出图形,设内切圆的圆心为,圆分别切于,可得四边形为正方形,再由圆的切线的性质结台双曲线的定义,求得的内切圆的圆心的纵坐标,结合已知列式,即可求得双曲线的离心率.【详解】设内切圆的圆心为,圆分别切于,连接,则,故四边形为正方形,边长为圆的半径,由,得,与重合,即,联立解得:,又因圆心的纵坐标为,.故答案为:【点睛】本题考查双曲线的几何性质,考查数形结合思想与
15、运算求解能力,属于中档题.14【解析】先根据茎叶图求出平均数和中位数,然后可得结果.【详解】剩下的四个数为83,85,87,95,且这四个数的平均数,这四个数的中位数为,则所剩数据的平均数与中位数的差为.【点睛】本题主要考查茎叶图的识别和统计量的计算,侧重考查数据分析和数学运算的核心素养.15【解析】依题意可得,再根据求模,求数量积,最后根据夹角公式计算可得;【详解】解:因为是夹角为的两个单位向量所以,又,所以,所以,因为所以;故答案为:【点睛】本题考查平面向量的数量积的运算律,以及夹角的计算,属于基础题.160【解析】直接根据向量垂直计算得到答案.【详解】向量与向量垂直,则,故.故答案为:.
16、【点睛】本题考查了根据向量垂直求参数,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2).【解析】(1)将函数的解析式表示为分段函数,然后分、三段求解不等式,综合可得出不等式的解集;(2)求出函数的最大值,由题意得出,解此不等式即可得出实数的取值范围.【详解】.(1)当时,由,解得,此时;当时,由,解得,此时;当时,由,解得,此时.综上所述,不等式的解集;(2)当时,函数单调递增,则;当时,函数单调递减,则,即;当时,函数单调递减,则.综上所述,函数的最大值为,由题知,解得.因此,实数的取值范围是.【点睛】本题考查含绝对值不等式的求解,同时
17、也考查了绝对值不等式中的参数问题,考查分类讨论思想的应用,考查运算求解能力,属于中等题.18直线与圆C相切【解析】首先把直线和圆转换为直角坐标方程,进一步利用点到直线的距离的应用求出直线和圆的位置关系【详解】直线为参数),转换为直角坐标方程为圆转换为直角坐标方程为,转换为标准形式为,所以圆心到直线,的距离直线与圆C相切【点睛】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,直线与圆的位置关系式的应用,点到直线的距离公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型19A【解析】由正弦定理化简得,解得,进而得到,利用正切的倍角公式求得,根据三角形的面积公式,求得
18、,进而化简,即可求解.【详解】由题意,在锐角中,满足,由正弦定理可得,即,可得,所以,即,所以,所以,则,所以,可得,又由的面积,所以,则.故选:A.【点睛】本题主要考查了正弦定理、余弦定理的应用,以及三角形的面积公式和正切的倍角公式的综合应用,着重考查了推理与运算能力,属于中档试题.20();().【解析】()利用勾股定理结合条件求得和,利用椭圆的定义求得的值,进而可得出,则椭圆的标准方程可求;()设点、,将直线的方程与椭圆的方程联立,利用韦达定理与弦长公式求出,利用几何法求得直线截圆所得弦长,可得出关于的函数表达式,利用不等式的性质可求得的取值范围.【详解】()在椭圆上, ,又,椭圆的标准
19、方程为;()设点、,联立消去,得,则,设圆的圆心到直线的距离为,则.,的取值范围为.【点睛】本题考查椭圆方程的求解,同时也考查了椭圆中弦长之积的取值范围的求解,涉及韦达定理与弦长公式的应用,考查计算能力,属于中等题.21()详见解析;();数学期望为6,方差为2.4.【解析】(1)完成列联表,由列联表,得,由此能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关(2) 由题意所抽取的10名女市民中,经常网购的有人,偶尔或不用网购的有人,由此能选取的3人中至少有2人经常网购的概率 由列联表可知,抽到经常网购的市民的频率为:,由题意,由此能求出随机变量的数学期望和方差【详解】解:(1)完成列联表(单位:人):经常网购偶尔或不用网购合计男性5050100女性7030100合计12080200由列联表,得:,能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关(2)由题意所抽取的10名女市民中,经常网购的有人,偶尔或不用网购的有人,选取的3人中至少有2人经常网购的概率为: 由列联表可知,抽到经常网购的市民的频率为:,将频率视为概率,从我市市民中任意抽取一人,恰好抽到经常网购市民的概率为0.6,由题意,随机变量的数学期望,方差D(X)=【点睛】本题考查独立检验的应用,考查概率、离散型随机变量的分布列、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 快消品包装行业环保包装设计理念与实践研究报告
- 效率提升计算机二级VFP的试题及答案
- pet考试试题及答案二级口语
- C语言考生必读2025年试题及答案
- 2025年K12课外辅导行业行业规范与监管政策研究报告
- 车祸责任划分与经济补偿调解协议
- java项目经理面试题库及答案
- 预测2025年税法考试走向的试题及答案
- 敏捷项目中的缺陷跟踪与管理试题及答案
- 信息安全技术评估策略试题
- 社会心理学第六讲爱情课件
- 创业者与创业团队课件
- 《园艺植物育种学》试题库参考答案
- 滚筒冷渣机技术协议
- JB-ZQ 4763-2006 膨胀螺栓规格及性能
- Q∕GDW 10799.6-2018 国家电网有限公司电力安全工作规程 第6部分:光伏电站部分
- 国家开放大学《行政组织学》章节测试参考答案
- GA 1551.6-2021 石油石化系统治安反恐防范要求 第6部分:石油天然气管道企业
- 工程机械维修工时费标准
- 投资决策流程图
- 油库安全点检表
评论
0/150
提交评论