福建泉州市2021-2022学年数学高二下期末达标检测试题含解析_第1页
福建泉州市2021-2022学年数学高二下期末达标检测试题含解析_第2页
福建泉州市2021-2022学年数学高二下期末达标检测试题含解析_第3页
福建泉州市2021-2022学年数学高二下期末达标检测试题含解析_第4页
福建泉州市2021-2022学年数学高二下期末达标检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1定义在上的函数,若对于任意都有且则不等式的解集是( )ABCD2下列命题中正确的个数( )“x0,2xsinx”的否定是“x00,2x0sinx0”;用相关指数R2可以刻画回归的拟合效果,A0B1C2D33设,则“”是“直线与平行”的

2、( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件4某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A0.8B0.75C0.6D0.455设函数f(x)=cos(x+),则下列结论错误的是Af(x)的一个周期为2By=f(x)的图像关于直线x=对称Cf(x+)的一个零点为x=Df(x)在(,)单调递减6已知:,且,则ABCD7已知函数,若对于区间上的任意,都有,则实数的最小值是()A20B18C3D08在某互联网大会上,为了提升安全级别,将5名特警分配到3个

3、重要路口执勤,每个人只能选择一个路口,每个路口最少1人,最多3人,且甲和乙不能安排在同一个路口,则不同的安排方法有( )A180种B150种C96种D114种9五个人站成一排,其中甲乙相邻的站法有( )A18种B24种C48种D36种10有10名学生和2名老师共12人,从这12人选出3人参加一项实践活动则恰有1名老师被选中的概率为( )A922B716C911设a,bR,则“ab”是“abA充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件12若离散型随机变量的概率分布列如下表所示,则的值为( )1ABC或D二、填空题:本题共4小题,每小题5分,共20分。13给出下列几个命题:三点

4、确定一个平面;一个点和一条直线确定一个平面;垂直于同一直线的两直线平行;平行于同一直线的两直线平行.其中正确命题的序号是_.14在大小相同的6个球中,2个是红球,4个是白球若从中任意选取3个,则所选的3个球中至少有1个红球的概率是_(结果用分数表示)15_16命题“若,则”的否命题为 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,为的导函数.证明:(1)在区间存在唯一极小值点;(2)有且仅有个零点.18(12分)已知函数(为常数)在处取得极值.()求实数的取值;()求当时,函数的最大值.19(12分)小陈同学进行三次定点投篮测试,已知第一次投篮命中的概率

5、为,第二次投篮命中的概率为,前两次投篮是否命中相互之间没有影响.第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为,否则为.(1)求小陈同学三次投篮至少命中一次的概率;(2)记小陈同学三次投篮命中的次数为随机变量,求的概率分布及数学期望.20(12分)十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加.为了制定提升农民年收入、实现2020年脱贫的工作计划,该地扶贫办统计了2019年50位农民的年收入并制成如下频率分布直方图:(1)根据频率分布直方图

6、,估计50位农民的年平均收入元(单位:千元)(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布,其中近似为年平均收入,近似为样本方差,经计算得,利用该正态分布,求:(i)在扶贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?附参考数据:,若随机变量X服从正态分布,则,.21

7、(12分)已知等比数列的前项和为,且, .(1)求数列的通项公式;(2)若, ,求数列的前项和.22(10分)设函数.(1)化简:;(2)已知:,求的表达式;(3),请用数学归纳法证明不等式.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】令,求导后根据题意知道在上单调递增,再求出,即可找到不等式的解集。【详解】令则所以在上单调递增,又所以的解集故选D【点睛】本题考查利用导数解不等式,属于中档题。2、C【解析】根据含量词命题的否定可知错误;根据相关指数的特点可知R2越接近0,模型拟合度越低,可知错误;根据四种命题的关系

8、首先得到逆命题,利用不等式性质可知正确;分别在m=0和m0的情况下,根据解集为R确定不等关系,从而解得m【详解】根据全称量词的否定可知“x0,2xsinx”的否定是“x相关指数R2越接近1,模型拟合度越高,即拟合效果越好;R2越接近若“ab0,则3a3b0当m=0时,mx2-2当m0时,若mx2-2m+1解得:m1,则正确.正确的命题为:本题正确选项:C【点睛】本题考查命题真假性的判断,涉及到含量词命题的否定、四种命题的关系及真假性的判断、相关指数的应用、根据一元二次不等式解集为R求解参数范围的知识.3、C【解析】先由直线与平行,求出的范围,再由充分条件与必要条件的概念,即可得出结果.【详解】

9、因为直线与平行,所以,解得或,又当时,与重合,不满足题意,舍去;所以;由时,与分别为,显然平行;因此“”是“直线与平行”的充要条件;故选C【点睛】本题主要考查由直线平行求参数,以及充分条件与必要条件的判定,熟记概念即可,属于常考题型.4、A【解析】试题分析:记“一天的空气质量为优良”,“第二天空气质量也为优良”,由题意可知,所以,故选A.考点:条件概率5、D【解析】f(x)的最小正周期为2,易知A正确;fcoscos31,为f(x)的最小值,故B正确;f(x)coscos,fcoscos0,故C正确;由于fcoscos1,为f(x)的最小值,故f(x)在上不单调,故D错误故选D.6、C【解析】

10、分析:由题目条件,得随机变量x的均值和方差的值,利用 即可得出结论详解:由题意, 故选:C点睛:本题主要考查正态分布的参数问题,属于基础题,正态分布涉及到连续型随机变量的分布密度,是概率统计中最重要的一种分布,也是自然界最常见的一种分布7、A【解析】对于区间3,2上的任意x1,x2都有|f(x1)f(x2)|t,等价于对于区间3,2上的任意x,都有f(x)maxf(x)mint,利用导数确定函数的单调性,求最值,即可得出结论【详解】对于区间3,2上的任意x1,x2都有|f(x1)f(x2)|t,等价于对于区间3,2上的任意x,都有f(x)maxf(x)mint,f(x)=x33x1,f(x)=

11、3x23=3(x1)(x+1),x3,2,函数在3,1、1,2上单调递增,在1,1上单调递减,f(x)max=f(2)=f(1)=1,f(x)min=f(3)=19,f(x)maxf(x)min=20,t20,实数t的最小值是20,故答案为A【点睛】本题考查导数知识的运用,考查恒成立问题,正确求导,确定函数的最值是关键8、D【解析】分析:先不管条件甲和乙不能安排在同一个路口,先算出总共的安排方法,再减去甲和乙在同一个路口的情况即可.详解:先不管条件甲和乙不能安排在同一个路口,分两种情况:三个路口人数情况3,1,1,共有种情况;三个路口人数情况2,2,1,共有种情况.若甲乙在同一路口,则把甲乙看

12、作一个整体,则相当于将4名特警分配到三个不同的路口,则有种,故甲和乙不能安排在同一个路口,不同的安排方法有种.故选:D.点睛:本题考查排列、组合的实际应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.9、C【解析】将甲乙看作一个大的元素与其他元素进行排列,再乘即可得出结论【详解】五个人站成一排,其中甲乙相邻,将甲乙看作一个大的元素与其他3人进行排列,再考虑甲乙顺序为,故共种站法.故选:C.【点睛】本题考查排列组合的应用,求排列组合常用的方法有:元素优先法、插空法、捆绑法、隔板法、间接法等,解决排列组合问题对学生的抽象思维能力和逻辑思维能力要求较高,本题属于简单题.10、A【解

13、析】先求出从12人中选3人的方法数,再计算3人中有1人是老师的方法数,最后根据概率公式计算【详解】从12人中选3人的方法数为n=C123=220,3人中愉有所求概率为P=m故选A【点睛】本题考查古典概型,解题关键是求出完成事件的方法数11、D【解析】利用特殊值来得出“ab”与“ab【详解】若a=b=3,则ab,但ab若a=2,b=-3,ab成立,但ab因此,“ab”是“ab”的既不充分也不必要条件,故选:D【点睛】本题考查充分必要条件的判断,常用集合的包含关系来进行判断,也可以利用特殊值以及逻辑推证法来进行判断,考查逻辑推理能力,属于中等题。12、A【解析】由离散型随机变量的概率分布表知:.解

14、得.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:由三点可能共线可判断错;由点可能在直线上可判断错;由两直线可能相交、异面判断错;根据公理可判定正确.详解:不共线的三点确定一个平面,故错误;一条直线和直线外一点确定一个平面,故错误;垂直于同一直线的两直线相交、平行或异面,故错误;平行于同一直线的两直线平行,故正确,故答案为.点睛:本题考查命题真假的判断,是基础题,解题时要认真审题,注意平面的基本性质及推理的合理运用. 空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太

15、容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.14、【解析】试题分析:由题意知本题是一个古典概型,试验发生包含的所有事件是从6个球中取3个,共有种结果,而满足条件的事件是所选的3个球中至少有1个红球,包括有一个红球2个白球;2个红球一个白球,共有所选的3个球中至少有1个红球的概率是.考点:等可能事件的概率.15、【解析】根据微积分基本定理计算即可【详解】(x2+2x+1)dx故答案为:【点睛】本题主要考查了微积分基本定理,关键是找到原函数,属于基础题16、若,则【解析】试题分析:否命题是对命题的条件和结论同时否定,同时否定和即可.命题“若,则”的否命题为:若,

16、则考点:四种命题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析【解析】(1)令,然后得到,得到的单调性和极值,从而证明在区间存在唯一极小值点;(2)根据的正负,得到的单调性,结合,的值,得到的图像,从而得到的单调性,结合和的值,从而判断出有且仅有个零点.【详解】(1)令,当时,恒成立,当时,.在递增,.故存在使得,时,时,.综上,在区间存在唯一极小值点.(2)由(1)可得时,单调递减,时,单调递增.且, .故的大致图象如下:当时,此时,单调递增,而.故存在,使得故在上,的图象如下:综上,时,时,时,.在递增,在递减,在递增,而,又当时,

17、恒成立.故在上的图象如下:有且仅有个零点.【点睛】本题考查利用导数研究函数的单调性和极值,利用导数研究函数零点个数,属于中档题.18、 (1).(2)是函数的最大值,即.【解析】 分析:(1)先求一阶导函数的根,求解或的解集,写出单调区间,再判断极值的情况。(2)先求在的极值,再判断最值。详解:(1),由题意知,.解得,经检验,符合题意.()证明:由(1)得.则 ,所以.当时, ,单调递增;当时, ,单调递减.所以是函数的最大值,即.点睛:极值转化为最值的性质:1、若上有唯一的极小值,且无极大值,那么极小值为的最小值;2、若上有唯一的极大值,且无极小值,那么极大值为的最大值;19、(1);(2

18、).【解析】分析:(1)先求小陈同学三次投篮都没有命中的概率,再用1减得结果,(2)先确定随机变量取法,再利用组合数求对应概率,列表得分布列,最后根据数学期望公式求结果.详解:(1)小陈同学三次投篮都没有命中的概率为(1)(1)(1);所以小陈同学三次投篮至少命中一次的概率为1. (2)可能的取值为0,1,2,1P(0);P(1)(1)(1)(1)(1)(1)(1);P(2);P(1);故随机变量的概率分布为0121P所以数学期望E()012=1 点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,

19、即利用排列组合,枚举法,概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值.20、(1)17.40千元;(2)(i)14.77千元.(ii)978人.【解析】(1)求解每一组数据的组中值与频率的乘积,将结果相加即可得到对应的;(2)(i)根据的数值判断出年收入的取值范围,从而可计算出最低年收入;(ii)根据的数值判断出每个农民年收入不少于千元的概率,然后根据二项分布的概率计算公式计算出“恰有个农民年收入不少于”中的最大值即可.【详解】解:(1)千元故估计50位农民的年平均收入为17.40千元;(2)由题意知(i),所以时,满足题意,即最低年收入大约为14.77千元. (ii)由,每个农民的年收入不少于12.14千元的事

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论