2021-2022学年河北省衡水市什平县启蒙中学高三数学文上学期期末试题含解析_第1页
2021-2022学年河北省衡水市什平县启蒙中学高三数学文上学期期末试题含解析_第2页
2021-2022学年河北省衡水市什平县启蒙中学高三数学文上学期期末试题含解析_第3页
2021-2022学年河北省衡水市什平县启蒙中学高三数学文上学期期末试题含解析_第4页
2021-2022学年河北省衡水市什平县启蒙中学高三数学文上学期期末试题含解析_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022学年河北省衡水市什平县启蒙中学高三数学文上学期期末试题含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知向量(4,2),(6,),且,则等于( )A3 B C12 D参考答案:A略2. 某三棱锥的侧视图和俯视图如图所示,则该三棱锥的体积为 A4 B8 C12 D24参考答案:A【知识点】空间几何体的表面积与体积空间几何体的三视图与直观图解:因为底面积高所以故答案为:A3. 如图,设D是图中边长分别为1和2的矩形区域,E是D内位于函数y=(x0)图象下方的区域(阴影部分),从D内随机取一个点M,则点M取自E内

2、的概率为()ABCD参考答案:C考点:定积分;几何概型 专题:计算题分析:先由积分的知识求解阴影部分的面积,然后可求试验的区域所对应的矩形的面积,由几何概率的求解公式代入可求解答:解:本题是几何概型问题,区域E的面积为:S=2=1+=1ln=1+ln2“该点在E中的概率”事件对应的区域面积为 1+ln2,矩形的面积为2由集合概率的求解可得P=故选C点评:本题综合考查了反比例函数的图象,几何概型,及定积分在求面积中的应用,考查计算能力与转化思想属于基础题4. 设a=60.7,b=0.76,c=log0.76,则a,b,c这三个数的大小关系为( )AcbaBcabCbacDacb参考答案:A【考点

3、】对数值大小的比较 【专题】计算题【分析】由a=60.760=1,0b=0.760.7,c=log0.76log0.71=0,知cba解:a=60.760=1,0b=0.760.7,c=log0.76log0.71=0,cba故选A【点评】本题考查对数值大小的比较,是基础题解题时要认真审题,仔细解答5. ABC中,“A”是“sinA”的( )A必要不充分条件B充分必要条件C充分不必要条件D既不充分也不必要条件参考答案:A考点:必要条件、充分条件与充要条件的判断 专题:解三角形分析:利用充要条件的概念即可判断是什么条件,从而得到答案要注意三角形内角和是,不要丢掉这个大前提解答:解:在ABC中,“

4、sinA”?“A”?“A”必要性成立;反之,“A不能?“sinA”,如A=时,sinA=sin=sinsin=,即sinA,即充分性不成立,可判断A是sinA的必要而不充分条件故选A点评:本题考查充分条件、必要条件与充要条件的定义,正弦函数的值,本题解题的关键是通过举反例来说明某个命题不正确,这是一种简单有效的方法,本题是一个基础题此题要注意思维的全面性,不能因为细节大意失分6. 设变量x,y满足约束条件,则z=2x+y的最小值为() A 7 B 6 C 1 D 2参考答案:A考点: 简单线性规划 专题: 不等式的解法及应用分析: 由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代

5、入目标函数得答案解答: 解:由约束条件作出可行域如图,化目标函数z=2x+y为y=2x+z,由图可知,当直线y=2x+z过B,即的交点(5,3)时,直线在y轴上的截距最小,z最小,为25+3=7故选:A点评: 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题7. 已知函数y =(x )的图象如下图所示(其中(x )是函数f (x )的导函数),下面四个图象中y = f (x )的图象大致是( ) 参考答案:答案:C8. 若函数,并且,则下列各结论正确的是( )ABCD参考答案:D考点:导数的综合运用试题解析:因为,令则在成立,所以g(x)为的减函数,所以,所以,所以为的减函数,

6、所以9. 下列函数中,在上单调递减,并且是偶函数的是ABC D参考答案:四个函数中,是偶函数的有,又在内单调递增,故选10. 如图,正三棱柱ABCA1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FDAC1,有下述结论(1)AC1BC; (2)=1;(3)面FAC1面ACC1A1;(4)三棱锥DACF的体积为其中正确的个数为()A1B2C3D4参考答案:C【考点】棱锥的结构特征【专题】综合题;空间位置关系与距离【分析】(1)连接AB1,则B1C1A即为BC和AC1所成的角,由余弦定理,即可判断;(2)连接AF,C1F,由正三棱柱的定义,即可判断;(3)连接CD,则CDAC1,且FD

7、AC1,则CDF为二面角FAC1C的平面角,通过解三角形CDF,即可判断;(4)由于AD平面CDF,通过VDACF=VADCF即可求出体积【解答】解:(1)连接AB1,则B1C1A即为BC和AC1所成的角,在三角形AB1C1中,B1C1=2,AB1=2,AC1=2,cosB1C1A=,故(1)错;(2)连接AF,C1F,则易得AF=FC1=,又FDAC1,则AD=DC1,故(2)正确;(3)连接CD,则CDAC1,且FDAC1,则CDF为二面角FAC1C的平面角,CD=,CF=,DF=,即CD2+DF2=CF2,故二面角FAC1C的大小为90,面FAC1面ACC1A1,故(3)正确;(4)由于

8、CDAC1,且FDAC1,则AD平面CDF,则VDACF=VADCF=?AD?SDCF=故(4)正确故选:C【点评】本题考查正三棱柱的定义和性质,考查线面垂直的判定和性质,空间的二面角,以及棱锥的体积,注意运用转换法,属于中档题二、 填空题:本大题共7小题,每小题4分,共28分11. 在ABC中,角A,B,C的对边分别为a,b,c,若,则的最小值是 参考答案:, , ,当且仅当时成立.12. (2016?桂林模拟)定义域为R的偶函数f(x)满足对?xR,有f(x+2)=f(x)f(1),且当x2,3时,f(x)=2x2+12x18,若函数y=f(x)loga(|x|+1)在(0,+)上至少有三

9、个零点,则a的取值范围是参考答案:(0,)【考点】抽象函数及其应用;函数的零点【专题】计算题;函数的性质及应用【分析】令x=1,求出f(1),可得函数f(x)的周期为2,当x2,3时,f(x)=2x2+12x18,画出图形,根据函数y=f(x)loga(|x|+1)在(0,+)上至少有三个零点,利用数形结合的方法进行求解【解答】解:f(x+2)=f(x)f(1),且f(x)是定义域为R的偶函数,令x=1可得f(1+2)=f(1)f(1),又f(1)=f(1),f(1)=0 则有f(x+2)=f(x),f(x)是最小正周期为2的偶函数当x2,3时,f(x)=2x2+12x18=2(x3)2,函数

10、的图象为开口向下、顶点为(3,0)的抛物线函数y=f(x)loga(|x|+1)在(0,+)上至少有三个零点,令g(x)=loga(|x|+1),则f(x)的图象和g(x)的图象至少有3个交点f(x)0,g(x)0,可得0a1,要使函数y=f(x)loga(|x|+1)在(0,+)上至少有三个零点,则有g(2)f(2),可得 loga(2+1)f(2)=2,即loga32,3,解得a,又0a1,0a,故答案为:(0,)【点评】此题主要考查函数奇偶性、周期性及其应用,解题的过程中用到了数形结合的方法,同时考查解决抽象函数的常用方法:赋值法,正确赋值是迅速解题的关键13. 如果(为实常数)的展开式

11、中所有项的系数和为0,则展开式中含项的系数为 .参考答案: 的展开式所有项的系数和为, ,其展开式中含项的系数为.14. 复数(i是虚数单位)是纯虚数,则实数a的值为 参考答案:4【考点】复数代数形式的乘除运算【专题】数系的扩充和复数【分析】化简复数为a+bi(a,bR),然后由复数的实部等于零且虚部不等于0求出实数a的值【解答】解:=复数是纯虚数,解得:a=4故答案为:4【点评】本题考查了复数的除法运算,考查了复数的基本概念,是基础题15. (A)(不等式选讲选做题)己知,若恒成立,利用柯西不等式可求得实数的取值范围是 .参考答案:略16. 椭圆 若直线则该椭圆的离心率等于 .参考答案:-1

12、17. 已知,则 .参考答案:-4函数的导数为,所以,解得,所以,所以,所以。三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. 已知函数.(1)若,求函数的所有零点;(2)若,证明函数不存在的极值.参考答案:(1) (2)见证明【分析】(1)首先将代入函数解析式,求出函数的定义域,之后对函数求导,再对导函数求导,得到(当且仅当时取等号),从而得到函数在单调递增,至多有一个零点,因为,是函数唯一的零点,从而求得结果;(2)根据函数不存在极值条件为函数在定义域上是单调函数,结合题中所给的参数的取值范围,得到在上单调递增,从而证得结果.【详解】(1)解:当 时,函

13、数的定义域为, 且设,则 当时,;当时, 即函数在上单调递减,在上单调递增, 所以当时,(当且仅当时取等号)即当时,(当且仅当时取等号)所以函数在单调递增,至多有一个零点. 因为,是函数唯一的零点.所以若,则函数的所有零点只有 (2)证法1:因为,函数的定义域为,且 当时, 由(1)知即当时,所以在上单调递增 所以不存在极值证法2:因为,函数的定义域为 ,且 设,则 设 ,则与同号当 时,由, 解得, 可知当时,即,当时,即,所以在上单调递减,在上单调递增 由(1)知则所以,即在定义域上单调递增 所以不存在极值【点睛】该题考查的是有关导数的应用问题,涉及到的知识点有求函数的零点,函数的极值存在

14、的条件,属于中档题目.19. (本题12分)参加市数学调研抽测的某校高三学生成绩分析的茎叶图和频率分布直方图均受到不同程度的破坏,但可见部分信息如下,据此解答如下问题:(1)求参加数学抽测的人数、抽测成绩的中位数及分数分别在,内的人数;(2)若从分数在内的学生中任选两人进行调研谈话,求恰好有一人分数在内的概率参考答案:(1)分数在内的频数为2,由频率分布直方图可以看出,分数在内同样有 人 - 2分,由, 得 , 茎叶图可知抽测成绩的中位数为 分数在之间的人数为 参加数学竞赛人数,中位数为73,分数在、内的人数分别为 人、 人 - 6分(2)设“在内的学生中任选两人,恰好有一人分数在内”为事件

15、,将 内的人编号为 ;内的人编号为 ,在内的任取两人的基本事件为: 共15个 - 9分其中,恰好有一人分数在内的基本事件有共8个,故所求的概率得 答:恰好有一人分数在内的概率为 - 12分20. 已知复数z满足z3=1,且z的虚部为sin60(1)求复数z;(2)设z,z2,z+z2在复平面上的对应点分别为A,B,C,求ABC的面积参考答案:【考点】A4:复数的代数表示法及其几何意义【分析】(1)设z=a+i,aR,运用复数的乘方运算,结合复数相等的条件,解方程可得a,进而得到所求复数;(2)求得z2,z+z2表示的复数,可得点A,B,C,再由三角形的面积公式计算即可得到所求面积【解答】解:(

16、1)z3=1,且z的虚部为sin60,可设z=a+i,aR,则(a+i)3=a3+3a2?i+3a?(i)2+(i)3=1,化简可得a3a+i(a2)=1,则a3a=1, a2=0,解得a=(舍去),则z=+i;(2)由z=+i,可得z2=i,z+z2=1,设z,z2,z+z2在复平面上的对应点分别为A,B,C,即有A(, i),B(,),C(1,0),即有ABC的面积为?|AB|?(+1)=【点评】本题考查复数的乘方和加减运算,考查复数相等的条件和复数的几何意义,以及三角形的面积的求法,考查运算能力,属于中档题21. (本小题满分10分)设命题p:函数f(x)=lg(ax2-4x+a)的定义域为R;命题q:不等式2x2+x2+ax,对x(-,-1)上恒成立,如果命

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论