




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、问题提出 1.在平面几何中,我们认识了三角形,正方形,矩形,菱形,梯形,圆,扇形等平面图形.那么对空间中各种各样的几何体,我们如何认识它们的结构特征? 2.对空间中不同形状、大小的几何体我们如何理解它们的联系和区别?1.1空间几何体的结构特征第一章空间几何体知识探究(一):空间几何体的类型 思考1:在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些抽象出来的空间图形就叫做空间几何体.你能列举那些空间几何体的实例?思考2:观察下列图片,你知道这图片在几何中分别叫什么名称吗?思考3:如果将这些几何体进行适当分类,你认为可以分成
2、那几种类型?思考4:图(2)(5)(7)(9)(13)(14)(15)(16)有何共同特点?这些几何体可以统一叫什么名称?思考5:图(1)(3)(4)(6)(8)(10)(11)(12)有何共同特点?这些几何体可以统一叫什么名称?多面体旋转体1.1.1柱、锥、台、球的结构特征1、多面体若干个平面多边形围成的几何体,叫多面体.围成多面体的各个多边形叫多面体的面;相邻两个面的公共边叫多面体的棱;棱和棱的公共点叫多面体的顶点; 有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的多面体叫做棱柱。 其余各面叫做棱柱的侧面。1-1、棱柱 两个互相平行的面叫做棱柱的底
3、面; 两个面的公共边叫做棱柱的棱。两个侧面的公共边叫做棱柱的侧棱。 与两个底面都垂直的直线夹在两底面间的线段长叫做棱柱的高。底面多边形与侧面的公共顶点叫做棱柱的顶点。棱柱的分类 棱柱的底面可以是三角形、四边形、五边形我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱1. 侧棱不垂直于底的棱柱叫做斜棱柱。2.侧棱垂直于底的棱柱叫做直棱柱。3. 底面是正多边形的直棱柱叫做正棱柱。SABCD顶点侧面侧棱底面 棱锥中,这个多边形面叫做棱锥的底面或底,有公共顶点的各个三角形面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶点,相邻侧面的公共边叫做棱锥的侧棱。棱锥的有关概念棱锥的表示用表示顶点和底面各顶点的字母表
4、示,如图所示的棱锥表示为:“棱锥SABCD”棱锥的分类三棱锥四棱锥五棱锥(四面体)正棱锥 如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥是正棱锥.OSABCDE正棱锥的基本性质 各侧棱相等,各侧面 是全等的等腰三角形,各等腰 三角形底边上的高相等(它叫做正棱锥的斜高)。1-3、棱台的概念 用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫作棱台。下底面上底面侧面侧棱高顶点棱台的分类: 由三棱锥、四棱锥、五棱锥截得的棱台,分别叫做三棱台,四棱台,五棱台棱台的表示方法:“棱台ABCDABCD”棱台的特点:两个底面是相似多边形,侧面都是梯形;侧棱延长后交于一点。斜
5、高用正棱锥截得的棱台叫作正棱台。正棱台正棱台的侧面是全等的等腰梯形,它的高叫作正棱台的斜高。正棱锥正四棱台理论迁移 例1 如图,截面BCEF将长方体分割成两部分,这两部分是否为棱柱? ABCDA1B1C1D1EF 例2 一个三棱柱可以分割成几个三棱锥?ACA1BB1C1A1BB1C1AA1BC1ACBC11.下图中不可能围成正方体的是( )ADCBB练习:2.在棱柱中.( )A . 只有两个面平行B . 所有的棱都相等C . 所有的面都是平行四边形D . 两底面平行,并且各侧棱也平行D 一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面。封闭的旋转面围成的几何体叫作旋转体。2
6、、旋转体2-1.圆柱、圆锥、圆台。底面侧面母线2-2. 球 以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫作球体,简称球。球心半径直径O想一想:用一个平面去截一个球,截面是什么?O 用一个截面去截一个球,截面是圆面。球面被经过球心的平面截得的圆叫做大圆。球面被不过球心的截面截得的圆叫球的小圆。球、圆柱、圆锥、圆台过轴的截面分别是什么图形?练习:1、下列命题是正确的是( )A 以直角三角形的一直角边所在的直线为轴旋转所得的几何体为圆锥;B 以直角梯形的一腰所在的直线为轴旋转所得的旋转体为圆柱;C 圆柱、圆锥、棱锥的底面都是圆;D 有一个面为多边形,其他各面都是三角形的几何体是棱锥。A
7、2、过球面上的两点作球的大圆,可以作( )个。1或无数多思考:棱柱、棱锥和棱台都是多面体,当底面发生变化时,它们能否互相转化?上底扩大上底缩小思考:圆柱、圆锥和圆台都是旋转体,当底面发生变化时,它们能否互相转化?上底扩大上底缩小提高: 长方体AC1中,AB=3,BC=2,BB1=1,由A到C1在长方体表面上的最短距离是多少?A1DACBD1B1C1AA1B1BC1D1CC1B1A1BADD1C1A1AB1简单几何体简单旋转体简单多面体球圆柱圆锥圆台棱柱棱锥棱台1.1.2简单组合体的结构特征 日常生活中我们常用到的日用品,比如:消毒液、暖瓶、洗洁精等的主要几何结构特征是什么?简单组合体 由柱、锥、台、球组成了一些简单的组合体认识它们的结构特征要注意整体与部分的关系圆柱圆台圆柱观 察由简单几何体组合而成的几何体叫简单组合体。简单组合体构成的两种基本形式:(1)由简单几何体拼接而成;(2)由简单几何体截去或挖去一部分而成。观 察说出下列几何体的主要结构特征简单组合体的结构特征简单组合体构成的两种基本形式:(1)由简单几何体拼接而成(2)由简单几
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度村后备干部选拔考试复习资料(含答案)
- 2025智能设备代理合同范本
- 德阳党校招聘考试试卷及答案
- 出入境工作人员安全培训课件
- 出入仓安全生产培训课件
- 大一体育课桥牌考试题及答案
- “粮食银行”诞生记
- 冲床安全操作规程
- 2025凭样品购销合同
- 冰雪路面安全驾驶培训课件
- 通信技术的现状与发展
- 水稻全程机械化栽培技术
- 北京师大附中市级名校2026届中考适应性考试语文试题含解析
- 2025年秋季学期初中学校全面工作安排(含各周重点工作安排)
- 2025年山西省教师职称考试(理论知识)复习题及答案(新课标)-山西教师
- 心理学基础(第2版) 课件 第2章 心理发展
- 2025年小学语文教师招聘考试测试卷及参考答案(共三套)
- 电气设备维护与检测收费标准
- 2025年美团民宿违规试题
- 系统性红斑狼疮眼部表现
- 药物多靶点联合治疗-洞察及研究
评论
0/150
提交评论