




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )A36种B48种C96种D192种2已知向量,且,则等于( )ABCD3设p:f(x
2、)=x3+2x2+mx+1在(-,+)内单调递增;q:m43A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件4已知,是两条不同直线,是两个不同平面,则下列命题正确的是( )(A)若,垂直于同一平面,则与平行(B)若,平行于同一平面,则与平行(C)若,不平行,则在内不存在与平行的直线(D)若,不平行,则与不可能垂直于同一平面5把18个人平均分成两组,每组任意指定正副组长各1人,则甲被指定为正组长的概率为( )ABCD6在极坐标系中,曲线的极坐标方程为,曲线的极坐标方程为,若曲线与的关系为()A外离B相交C相切D内含7在某次体检中,学号为()的四位同学的体重是集合中的元素,并满
3、足,则这四位同学的体重所有可能的情况有( )A55种B60种C65种D70种8已知,记为,中不同数字的个数,如:,则所有的的排列所得的的平均值为( )AB3CD49设复数满足,则( )ABCD210已知10件产品中,有7件合格品,3件次品,若从中任意抽取5件产品进行检查,则抽取的5件产品中恰好有2件次品的抽法有( )A种B种C种D种11在方程(为参数)所表示的曲线上的点是 ( )A(2,7)BC(1,0)D12函数的一个单调增区间是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙
4、应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”四人中只有一个人说的是真话,则该事故中需要负主要责任的人是_14组合恒等式,可以利用“算两次”的方法来证明:分别求和的展开式中的系数前者的展开式中的系数为;后者的展开式中的系数为.因为,则两个展开式中的系数也相等,即请用“算两次”的方法化简下列式子:_15由海军、空军、陆军各3名士兵组成一个有不同编号的的小方阵,要求同一军种不在同一行,也不在同一列,有_种排法16已知在R上不是单调增函数,那么实数的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆的离心率为,以原点为圆心,椭圆短半轴长半径的
5、圆与直线相切(1)求与;(2)设该椭圆的左、右焦点分别为和,直线过且与轴垂直,动直线与轴垂直,交与点求线段垂直平分线与的交点的轨迹方程,并指明曲线类型18(12分)已知椭圆:的离心率为,且经过点.(1)求椭圆的方程;(2)直线:与椭圆相交于,两点,若,试用表示.19(12分)如图,在四棱锥PABCD中,AB/CD,且.(1)证明:平面PAB平面PAD;(2)若PA=PD=AB=DC,求二面角APBC的余弦值.20(12分)的内角,所对的边分别为,向量与平行()求;()若,求的面积21(12分)已知椭圆C的中心在坐标原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点()求椭圆C的标准
6、方程;()若直线与椭圆C相交于A、B两点,在y轴上是否存在点D,使直线AD与BD关于y轴对称?若存在,求出点D坐标;若不存在,请说明理由22(10分)为促进全面健身运动,某地跑步团体对本团内的跑友每周的跑步千米数进行统计,随机抽取的100名跑友,分别统计他们一周跑步的千米数,并绘制了如图频率分布直方图.(1)由频率分布直方图计算跑步千米数不小于70千米的人数;(2)已知跑步千米数在的人数是跑步千米数在的,跑步千米数在的人数是跑步千米数在的,现在从跑步千米数在的跑友中抽取3名代表发言,用表示所选的3人中跑步千米数在的人数,求的分布列及数学期望.参考答案一、选择题:本题共12小题,每小题5分,共6
7、0分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:设4门课程分别为1,2,3,4,甲选修2门,可有1,2;1,3;1,4;2,3;2,4;3,4共6种情况,同理乙,丙均可有1,2,3;1,2,4;2,3,4;1,3,4共4种情况,不同的选修方案共有644=96种,故选C考点:分步计数原理点评:本题需注意方案不分次序,即a,b和b,a是同一种方案,用列举法找到相应的组合即可2、B【解析】由向量垂直可得,求得x,及向量的坐标表示,再利用向量加法的坐标运算和向量模的坐标运算可求得模.【详解】由,可得,代入坐标运算可得x-4=0,解得x=4,所以 ,得=5,选B.【点睛
8、】求向量的模的方法:一是利用坐标,二是利用性质,结合向量数量积求解.3、C【解析】试题分析:由f(x)=x3+2x2+mx+1在(-,+)内单调递增,得f(x)=3x2+4x+m0在R上恒成立,只需=16-12m0,即m考点:1、充分条件与必要条件;2、利用导数研究函数的单调性.4、D【解析】由,若,垂直于同一平面,则,可以相交、平行,故不正确;由,若,平行于同一平面,则,可以平行、重合、相交、异面,故不正确;由,若,不平行,但平面内会存在平行于的直线,如平面中平行于,交线的直线;由项,其逆否命题为“若与垂直于同一平面,则,平行”是真命题,故项正确.所以选D.考点:1.直线、平面的垂直、平行判
9、定定理以及性质定理的应用.5、B【解析】把18个人平均分成2组,再从每组里任意指定正、副组长各1人,即从9人中选一个正组长,甲被选定为正组长的概率,与组里每个人被选中的概率相等【详解】由题意知,把18个人平均分成2组,再从每组里任意指定正、副组长各1人,即从9个人中选一个正组长,甲被选定为正组长的概率是故选B【点睛】本题考查了等可能事件的概率应用问题,是基础题目6、B【解析】将两曲线方程化为普通方程,可得知两曲线均为圆,计算出两圆圆心距,并将圆心距与两圆半径差的绝对值和两半径之和进行大小比较,可得出两曲线的位置关系.【详解】在曲线的极坐标方程两边同时乘以,得,化为普通方程得,即,则曲线是以点为
10、圆心,以为半径的圆,同理可知,曲线的普通方程为,则曲线是以点为圆心,以为半径的圆,两圆圆心距为,因此,曲线与相交,故选:B.【点睛】本题考查两圆位置关系的判断,考查曲线极坐标方程与普通方程的互化,对于这类问题,通常将圆的方程化为标准方程,利用两圆圆心距与半径和差的大小关系来得出两圆的位置关系,考查分析问题和解决问题的能力,属于中等题.7、D【解析】根据中等号所取个数分类讨论,利用组合知识求出即可.【详解】解:当中全部取等号时,情况有种;当中有两个取等号,一个不取等号时,情况有种;当中有一个取等号,两个不取等号时,情况有种;当中都不取等号时,情况有种;共种.故选:D.【点睛】本题考查分类讨论研究
11、组合问题,关键是要找准分类标准,是中档题.8、A【解析】由题意得所有的的排列数为,再分别讨论时的可能情况则均值可求【详解】由题意可知,所有的的排列数为,当时,有3种情形,即,;当时,有种;当时,有种,那么所有27个的排列所得的的平均值为.故选:A【点睛】本题考查排列组合知识的应用,考查分类讨论思想,考查推理论证能力和应用意识,是中档题9、A【解析】由,得,故选A10、C【解析】根据题意,分2步进行分析,第一步从3件次品中抽取2件次品,第二步从7件正品中抽取3件正品,根据乘法原理计算求得结果【详解】根据题意,分2步进行分析: .从3件次品中抽取2件次品,有种抽取方法,;.从7件正品中抽取3件正品
12、,有种抽取方法, 则抽取的5件产品中恰好有2件次品的抽法有种; 故选:C【点睛】本题考查排列组合的实际应用,注意是一次性抽取,抽出的5件产品步需要进行排列11、D【解析】分析:化参数方程(为参数)为普通方程,将四个点代入验证即可.详解:方程(为参数)消去参数得到将四个点代入验证只有D满足方程.故选D.点睛:本题考查参数分析与普通方程的互化,属基础题12、B【解析】对函数在每个选项的区间上的单调性进行逐一验证,可得出正确选项.【详解】对于A选项,当时,所以,函数在区间上不单调;对于B选项,当时,所以,函数在区间上单调递增;对于C选项,当时,所以,函数在区间上单调递减;对于D选项,当时,所以,函数
13、在区间上单调递减.故选:B.【点睛】本题考查正弦型函数在区间单调性的判断,一般利用验证法进行判断,即求出对象角的取值范围,结合正弦函数的单调性进行判断,考查推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、甲【解析】试题分析:若负主要责任的是甲,则甲乙丙都在说假话,只有丁说真话,符合题意若负主要责任的是乙,则甲丙丁都在说真话,不合题意若负主要责任的是丙,则乙丁都在说真话,不合题意若负主要责任的是丁,则甲乙丙丁都在说假话,不合题意考点:逻辑推理14、【解析】结合所给信息,构造,利用系数相等可求.【详解】因为,则两个展开式中的系数也相等,在中的系数为,而在中的系数为,所以
14、可得.【点睛】本题主要考查二项式定理的应用,精准理解题目所给信息是求解关键,侧重考查数学抽象和数学建模的核心素养.15、2592【解析】假设海军为a,空军为b,陆军为c,先将a,b,c,填入的小方阵,有12种填入方法,再每个a,b,c填入3名士兵均有种,根据分步计数原理可得【详解】解:假设海军为a,空军为b,陆军为c,先将a,b,c,填入的小方阵,则有种,每个a,b,c填入3名士兵均有种,故共有,故答案为:2592 【点睛】本题考查了分步计数原理,考查了转化能力,属于难题16、(,1)(2,+)【解析】根据函数单调性和导数之间的关系,转化为f(x)0不恒成立,即可得到结论【详解】函数yx3+m
15、x2+(m+2)x+3,f(x)x2+2mx+m+2,函数yx3+mx2+(m+2)x+3在R上不是增函数,f(x)x2+2mx+m+20不恒成立,判别式4m24(m+2)0,m2m20,即m1或m2,故答案为:(,1)(2,+)【点睛】本题考查了利用导数研究函数的单调性问题,考查了转化思想,考查了二次不等式恒成立的问题,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2),该曲线为抛物线(除掉原点)【解析】(1)由题可知,直线与圆相切,根据圆心到直线的距离等于半径,结合离心率,即可求出与.(2)求出焦点坐标,设点坐标,从而得出的坐标,同时设,利用垂直关
16、系可得出关于的式子即为的轨迹方程.【详解】解:(1),(2),两点分别为,由题意可设那么线段中点为,设是所求轨迹上的任意点由于,即,所以又因为,消参得轨迹方程为.该曲线为抛物线(除掉原点)【点睛】本题主要考查椭圆的简单几何性质,包括离心率、短半轴长、焦点坐标,还涉及中点坐标公式,以及两直线垂直时斜率相乘为-1,还利用消参法求动点的轨迹方程.18、 (1) (2) 【解析】(1)由题意列方程组,求解方程组即可得解;(2)由直线和椭圆联立,利用弦长公式结合韦达定理求表示即可.【详解】(1)由题意解得故椭圆C的方程为(2)设A(x1,y1),B(x2,y2),由,得(2k2+1)x2+4kmx+2m
17、2-80,所以,因为|AB|4|,所以,所以,整理得k2(4-m2)m2-2,显然m24,又k0,所以故【点睛】本题主要考查了直线与椭圆相交的弦长问题,属于基础题.19、(1)见解析;(2).【解析】(1)由已知,得ABAP,CDPD由于AB/CD ,故ABPD ,从而AB平面PAD又AB 平面PAB,所以平面PAB平面PAD(2)在平面内作,垂足为,由(1)可知,平面,故,可得平面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)及已知可得,.所以,.设是平面的法向量,则即可取.设是平面的法向量,则即可取.则,所以二面角的余弦值为.【名师点睛】高考对空间向量与
18、立体几何的考查主要体现在以下几个方面:求异面直线所成的角,关键是转化为两直线的方向向量的夹角;求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.20、();()【解析】试题分析:(1)根据平面向量,列出方程,在利用正弦定理求出的值,即可求解角的大小;(2)由余弦定理,结合基本不等式求出的最大值,即得的面积的最大值.试题解析:(1)因为向量与平行,所以,由正弦定理得,又,从而tanA,由于0A0,所以c3.故ABC的面积为bcsinA.考点:平面向量的共线应用;正弦定理与余弦定理.21、(1);(2)见解析.【解析】分析:(1)由题意得,求解即可;(2)假设存在点满足条件,则,设,联立方程,从而可得,又由,得,从而求得答案.详解:()由题意,设椭圆方程为,则有,解得,所以椭圆C的方程为 ()假设存在点满足条件,则设,联立方程,得, 由,得,即,综上所述,存在点,使直线AD与BD关于y轴对称点睛:对题目涉及的变量巧妙的引进参数,利用题目的条件和圆锥曲线方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系进
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 计算机绘图Photoshop应用试题及答案
- 法律综合复试题库及答案
- 法律知识试题及答案
- 全方面提升计算机二级Delphi试题及答案
- 法律学徒制面试题及答案
- 学习MySQL的高效策略及试题及答案
- 逐步提升的Msoffice试题及答案
- 法律类考试题卷子及答案
- 法律基础试题题库及答案
- 2025年全球市场营销中英文合作合同
- 苏州市建设工程造价计价解释
- 煤矿机电设备春季预防性检修计划
- 2017年山东、临沂爆炸事故案例分析
- 工贸企业安全管理台账资料
- 三方协议书(消防)
- S771(一) 水力循环澄清池
- 预激综合征临床心电图的当前观点
- 高密度电法探测及数据处理解释--答辩
- 阀门检修作业指导书讲解
- 毕业设计(论文)秸秆粉碎机的设计(含全套图纸)
- 体育测量与评价PPT课件-第五章身体素质的测量与评价
评论
0/150
提交评论