2022年贵州省铜仁市第一中学数学高二下期末考试试题含解析_第1页
2022年贵州省铜仁市第一中学数学高二下期末考试试题含解析_第2页
2022年贵州省铜仁市第一中学数学高二下期末考试试题含解析_第3页
2022年贵州省铜仁市第一中学数学高二下期末考试试题含解析_第4页
2022年贵州省铜仁市第一中学数学高二下期末考试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题

2、卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1下列有关命题的说法正确的是()A命题“若x21,则x1”的否命题为“若x21,则x1”B“x1”是“x25x60”的必要不充分条件C命题“若xy,则sin xsin y”的逆否命题为真命题D命题“x0R使得”的否定是“xR,均有x2x10,使得(Ax0,总有(x+2)ex1BCx0,总有(x+2)ex1D7利用数学归纳法证明“ 且”的过程中,由假设“”成立,推导“”也成立时,该不等式左边的变化是( )A增加B增加C增加并减少D增加并减少8已知样本数据点集合为,样本中心点为,且其回

3、归直线方程为,则当时,的估计值为( )ABCD9有6名选手参加演讲比赛,观众甲猜测:1、2、6号选手中的一位获得第一名;观众乙猜测:4、5、6号选手都不可能获得第一名;观众丙猜测:4号或5号选手得第一名;观众丁猜测:3号选手不可能得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A甲B乙C丙D丁10已知为双曲线的右焦点,过原点的直线与双曲线交于,两点,若且的周长为,则该双曲线的离心率为( )ABCD11如图,表示三个开关,设在某段时间内它们正常工作的概率分别是0.9、0.8、0.7,那么该系统正常工作的概率是( )A0.994B0.686C0.504D0.4

4、9612设实数x,y满足约束条件3x-2y+40 x+y-40 x-ay-20,已知z=2x+y的最大值是7,最小值是A6 B-6 C-1 D1二、填空题:本题共4小题,每小题5分,共20分。13若函数有两个极值点,其中,,且,则方程的实根个数为_个.14如图是棱长为的正方体的平面展开图,则在这个正方体中,直线与所成角的余弦值为_ 15已知球的半径为24cm,一个圆锥的高等于这个球的直径,而且球的表面积等于圆锥的表面积,则这个圆锥的体积是_ cm1(结果保留圆周率)16下列随机变量中不是离散型随机变量的是_(填序号)某宾馆每天入住的旅客数量是;某水文站观测到一天中珠江的水位;西部影视城一日接待

5、游客的数量;阅海大桥一天经过的车辆数是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)求适合下列条件的圆锥曲线的标准方程(1)求与椭圆有公共焦点,且离心率的双曲线的方程(2)求顶点在原点,准线方程为的抛物线的方程18(12分)设相互垂直的直线,分别过椭圆的左、右焦点,且与椭圆的交点分别为、和、.(1)当的倾斜角为时,求以为直径的圆的标准方程;(2)问是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.19(12分)大型水果超市每天以元/千克的价格从水果基地购进若干水果,然后以元/千克的价格出售,若有剩余,则将剩余的水果以元/千克的价格退回水果基地,为了

6、确定进货数量,该超市记录了水果最近天的日需求量(单位:千克),整理得下表:日需求量频数以天记录的各日需求量的频率代替各日需求量的概率.(1)求该超市水果日需求量(单位:千克)的分布列;(2)若该超市一天购进水果千克,记超市当天水果获得的利润为(单位:元),求的分布列及其数学期望.20(12分)(1)设:实数x满足|xm|2,设:实数x满足1;若p是q的必要不充分条件,求实数m的取值范围(2)已知p:函数f(x)ln(x2ax+3)的定义城为R,已知q:已知且,指数函数g(x)(a1)x在实数域内为减函数;若pq为假命题,求实数a的取值范围21(12分)已知函数/(x.(1)当时,求在最小值;(

7、2)若存在单调递减区间,求的取值范围;(3)求证:.22(10分)设集合,其中.(1)写出集合中的所有元素;(2)设,证明“”的充要条件是“”(3)设集合,设,使得,且,试判断“”是“”的什么条件并说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】命题“若x21,则x1”的否命题为“若x21,则x1”,A不正确;由x25x60,解得x1或6,因此“x1”是“x25x60”的充分不必要条件,B不正确;命题“若xy,则sin xsin y”为真命题,其逆否命题为真命题,C正确;命题“x0R使得x010,总有(x+2

8、)故选C【点睛】本题主要考查的是命题及其关系,命题的否定是对命题结论的否定,属于基础题7、D【解析】由题写出时的表达式和的递推式,通过对比,选出答案【详解】时,不等式为时,不等式为,增加并减少.故选D.【点睛】用数学归纳法写递推式时,要注意从到时系数k对表达式的影响,防止出错的方法是依次写出和的表达式,对比增项是什么,减项是什么即可8、D【解析】根据线性回归直线过样本中心点,可得,然后代值计算,可得结果.【详解】由题可知:所以回归直线方程为当当时,故选:D【点睛】本题考查线性回归方程,掌握回归系数的求法以及回归直线必过样本中心点,属基础题.9、B【解析】分别假设甲、乙、丙、丁猜对比赛结果,逐一

9、判断得到答案.【详解】假设甲猜对比赛:则观众丁猜测也正确,矛盾假设乙猜对比赛:3号得第一名,正确假设丙猜对比赛:则观众丁猜测也正确,矛盾假设丁猜对比赛:则观众甲和丙中有一人正确,矛盾故答案选B【点睛】本题考查了逻辑推理,意在考查学生的逻辑推理能力.10、D【解析】设双曲线的另一个焦点为,则根据双曲线的对称性得为矩形,由条件可得,由双曲线的定义,再由勾股定理可解得离心率.【详解】设双曲线的另一个焦点为,由.根据双曲线的对称性得为矩形,如图,.又的周长为,则.由双曲线的定义由,得.在直角三角形中, .则,即,所以.故选:D【点睛】本题考查双曲线的对称性和定义,求双曲线的离心率,属于难题.11、B【

10、解析】由题中意思可知,当、元件至少有一个在工作,且元件在工作时,该系统正常公式,再利用独立事件的概率乘法公式可得出所求事件的概率【详解】由题意可知,该系统正常工作时,、元件至少有一个在工作,且元件在元件,当、元件至少有一个在工作时,其概率为,由独立事件的概率乘法公式可知,该系统正常工作的概率为,故选B【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,在处理至少等问题时,可利用对立事件的概率来计算,考查计算能力,属于中等题12、D【解析】试题分析:画出不等式组表示的区域如图,从图形中看出当不成立,故,当直线经过点时,取最大值,即,解之得,所以应选D.考点:线性规划的知识及逆

11、向运用【易错点晴】本题考查的是线性约束条件与数形结合的数学思想的求参数值的问题,解答时先构建平面直角坐标系,准确的画出满足题设条件3x-2y+40 x+y-40 x-ay-20的平面区域,然后分类讨论参数的符号,进而移动直线,发现当该直线经过点时取得最大值,以此建立方程,通过解方程求出参数的值.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据有两个极值点可知有两个不等正根,即有两个不等正根,从而可得;采用换元的方式可知方程有两个不等实根,从而可将问题转化为与和共有几个交点的问题;通过确定和的范围可确定大致图象,从而通过与和的交点确定实根的个数.【详解】有两个极值点有两个不等正

12、根即有两个不等正根 且,令,则方程的判别式方程有两解,且,由得:,又 且 根据可得简图如下:可知与有个交点,与有个交点方程的实根个数为:个本题正确结果:【点睛】本题考查方程解的个数的求解问题,解决此类问题常用的方法是将问题转化为曲线与平行于轴直线的交点个数问题,利用数形结合的方法来进行求解;本题解题关键是能够确定极值的大致取值范围,从而确定函数的图象.14、【解析】结合正方体的平面展开图,作出正方体的直观图,可知是正三角形,从而可知直线与所成角为,即可得到答案.【详解】作出正方体的直观图,连接,易证三角形是正三角形,而, 故直线与所成角为,则直线与所成角的余弦值为.【点睛】本题考查了正方体的结

13、构特征,考查了异面直线的夹角的求法,属于中档题.15、【解析】结合球的表面积等于圆锥的表面积,建立等式,计算半径r,利用体积计算公式,即可。【详解】结合题意可知圆锥高h=48,设圆锥 底面半径为r,则圆锥表面积 ,计算得到 ,所以圆锥的体积【点睛】本道题考查了立体几何表面积和体积计算公式,结合题意,建立等式,计算半径r,即可,属于中等难度的题。16、【解析】利用离散型随机变量的定义直接求解【详解】中的随机变量的所有取值,我们都可以按照一定的次序一一列出,因此它们是离散型随机变量;中随机变量可以取某一区间内的一切值,但无法按一定次序一一列出,故不是离散型随机变量故答案为:【点睛】本题考查离散型随

14、机变量的判断,是基础题,解题时要认真审题,注意离散型随机变量的定义的合理运用,比较基础三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意双曲线方程可设为,可得关于的方程组,进而求出双曲线的方程(2)根据抛物线的顶点在原点,准线方程为,可设抛物线方程为,从而可求得抛物线的方程【详解】(1)解:依题意,双曲线的焦点坐标是故双曲线的方程可设为又双曲线的离心率解得双曲线的方程为(2)解:抛物线的顶点在原点,准线方程为可设抛物线方程为抛物线方程为【点睛】本题考查圆锥曲线的综合,主要考查椭圆、双曲线、抛物线的相关性质,是基础题.解题时需要认真审题.18、

15、()()存在,使得恒成立,详见解析【解析】(1)将直线的方程与椭圆的方程联立,列出韦达定理,计算出线段的中点坐标,利用弦长公式计算出,于此得出圆心坐标和半径长,再写出圆的标准式方程;(2)对直线的斜率是否存在进行分类讨论,在直线的斜率不存在时,分别计算出和,可计算出的值,在直线的斜率存在且不为零时,设直线的方程为,将该直线方程与椭圆方程联立,利用弦长公式以及韦达定理计算出,同理计算出,代入题中等式计算出的值,从而说明实数存在【详解】(1)由题意可设的方程为,代入可得 所以,的中点坐标为 又, 所以,以为直径的圆的方程为 (2)假设存在常数,使得恒成立 当与轴垂直或与轴垂直时,;设直线的方程为,

16、则直线的方程为将的方程代入得: 由韦达定理得:,所以 同理可得 所以 因此,存在,使得恒成立【点睛】本题考查直线与椭圆的综合问题,考查弦长公式、圆的标准方程,计算量大,解题的易错点就是计算,计算时可充分利用因式分解等一些常规步骤来操作,另外在设直线方程时也可以掌握一些技巧,降低运算量19、 (1)分布列见解析.(2)分布列见解析;元【解析】分析:(1)根据表格得到该超市水果日需求量(单位:千克)的分布列;(2)若A水果日需求量为140千克,则X=140(1510)(150140)(108)=680元,则P(X=680)=0.1若A水果日需求量不小于150千克,则X=150(1510)=750元

17、,且P(X=750)=10.1=0.2由此能求出X的分布列和数学期望E(X)详解:(1)的分布列为 (2)若水果日需求量为千克,则 元,且.若水果日需求量不小于千克,则元,且.故的分布列为元.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或事

18、件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布XB(n,p),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)np)求得.20、(1);(2)【解析】(1)解绝对值不等式求得中的范围,解分式不等式求得中的取值范围.由是的必要不充分条件知是的充分不必要条件,由此列不等式组,解不等式组求得的取值范围.(2)根据的定义域为求得为真时,的取值范围.根据的单调性求得为假时的取值范围.为假命题可知真假,由此列不等式组,解不等式组求得的取值范围.【详解】(1)记,即 由条件 是

19、的必要不充分条件知是的充分不必要条件,从而有是的真子集,则, 可得,故 (2)当为真命题时,函数的定义域为,则恒成立,即,从而; 条件为假命题可知真假,当为假命题时有即 从而当真假有 即, 故【点睛】本小题主要考查绝对值不等式、分式不等式的解法,考查对数函数的定义域,考查指数函数的单调性,考查含有简单逻辑联结词命题真假性有关知识,属于中档题.21、(1)1;(2);(3)见解析【解析】分析:(I)可先求f(x),从而判断f(x)在x1,+)上的单调性,利用其单调性求f(x)在x1,+)最小值;()求h(x),可得若f(x)存在单调递减区间,需h(x)0有正数解从而转化为:ax2+2(a1)x+a0有x0的解通过对a分a=0,a0与当a0三种情况讨论解得a的取值范围;()(法一)根据()的结论,当x1时,即.,再构造函数,令,有,从而,问题可解决;(法二)可用数学归纳法予以证明当n=1时,ln(n+1)=ln2,3ln2=ln81,成立;设时,命题成立,即,再去证明n=k+1时,即可(需用好归纳假设)详解:(1),定义域为.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论