版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、两支篮球队进行比赛,约定先胜局者获得比赛的胜利,比赛随即结束.除第五局队获胜的概率是外,其余每局比赛队获胜的概率都是.假设各局比赛结果相互独立.则队以获得比赛胜利的概率为( )ABCD2若函数在区间上的最小值为,则实数的值为( )A
2、BCD3,则的值为( )ABCD4在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”四人中只有一个人说的是真话,则该事故中需要负主要责任的人是( )A甲B乙C丙D丁5如果函数在上的图象是连续不断的一条曲线,那么“”是“函数在内有零点”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件6由曲线,所围成图形的面积是( )ABCD7构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,则与的面积之比为( )ABCD8已知(为虚
3、单位),则复数在复平面上所对应的点在()A第一象限B第二象限C第三象限D第四象限9已知集合,则()ABCD10在一次试验中,测得的四组值分别是,则与之间的线性回归方程为( )ABCD11a,b为空间两条互相垂直的直线,等腰直角三角形的直角边所在直线与a,b都垂直,斜边以为旋转轴选择,有下列结论:当直线与a成60角时,与b成30角;当直线与a成60角时,与b成60角;直线与a所成角的最小值为45;直线与a所成角的最大值为60;其中正确的是_.(填写所以正确结论的编号).ABCD12如图,是正四面体的面上一点,点到平面距离与到点的距离相等,则动点的轨迹是( )A直线B抛物线C离心率为的椭圆D离心率
4、为3的双曲线二、填空题:本题共4小题,每小题5分,共20分。13若点是曲线上任意一点,则点到直线的距离的最小值为_14下表是某厂14月份用水量(单位:百吨)的一组数据:月份1234用水量4.5432.5由散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归直线方程是,则等于_15在等差数列中,则_16若函数是偶函数,且在上是增函数,若,则满足的实数的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知是等差数列,满足,数列满足,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.18(12分)已知函数,.(1)若恒成立,求的取值范围;(
5、2)已知,若使成立,求实数的取值范围.19(12分)已知直线:(为参数),曲线:(为参数)(1)设与相交于两点,求;(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点P是曲线上的一个动点,求它到直线的距离的最大值20(12分)在中,角所对的边分别为,其中(1)求;(2)求边上的高,21(12分)已知集合,函数的定义域为,值域为.(1)若,求不同的函数的个数;(2)若,()求不同的函数的个数;()若满足,求不同的函数的个数.22(10分)已知函数,若定义域内存在实数x,满足,则称为“局部奇函数(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由(2)设是定义在
6、上的“局部奇函数”,求实数m的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:若“队以胜利”,则前四局、各胜两局,第五局胜利,利用独立事件同时发生的概率公式可得结果.详解:若“队以胜利”,则前四局、各胜两局,第五局胜利,因为各局比赛结果相互独立,所以队以获得比赛胜利的概率为,故选A.点睛:本题主要考查阅读能力,独立事件同时发生的概率公式,意在考查利用所学知识解决实际问题的能力,属于中档题.2、A【解析】求出,(或)是否恒成立对分类讨论,若恒成立求出最小值(或不存在最小值),若不恒成立,求出极值最小值,建立
7、的关系式,求解即可.【详解】.(1)当时,所以在上单调递减,(舍去).(2)当时,.当时,此时在上恒成立,所以在上单调递减,解得(舍去);当时,.当时,所以在上单调递减,当时,所以在上单调递增,于是,解得.综上,.故选:A【点睛】本题考查函数的最值,利用导数是解题的关键,考查分类讨论思想,如何合理确定分类标准是难点,属于中档题.3、B【解析】利用同角三角函数的平方关系计算出的值,再利用诱导公式可得出的值.【详解】,且,由诱导公式得,故选B.【点睛】本题考查同角三角函数的平方关系,同时也考查了诱导公式的应用,在利用同角三角函数基本关系求值时,先要确定角的象限,确定所求三角函数值的符号,再结合相应
8、的公式进行计算,考查运算求解能力,属于基础题.4、A【解析】假定甲说的是真话,则丙说“甲说的对”也是真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故甲说的是假话;假定乙说的是真话,则丁说“反正我没有责任”也为真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故乙说的是假话;假定丙说的是真话,由知甲说的也是真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故丙说的是假话;综上可得,丁说的真话,甲乙丙三人说的均为假话,即乙丙丁没有责任,所以甲负主要责任,故选A.5、A【解析】由零点存在性定理得出“若,则函数在内有零点”举反例即可得出正确答案.【详解】由零点存在性定理可知
9、,若,则函数在内有零点而若函数在内有零点,则不一定成立,比如在区间内有零点,但所以“”是“函数在内有零点”的充分而不必要条件故选:A【点睛】本题主要考查了充分不必要条件的判断,属于中档题.6、A【解析】先计算交点,再根据定积分计算面积.【详解】曲线,交点为: 围成图形的面积: 故答案选A【点睛】本题考查了定积分的计算,意在考查学生的计算能力.7、D【解析】由题意得出点为的中点,由余弦定理得出,结合三角形面积公式得出正确答案.【详解】,即点为的中点由余弦定理得:解得: 故选:D【点睛】本题主要考查了余弦定理以及三角形的面积公式,属于中档题.8、B【解析】由得,再利用复数的除法法则将复数表示为一般
10、形式,即可得出复数所表示的点所在的象限.【详解】由得,因此,复数在复平面上对应的点在第二象限,故选B.【点睛】本题考查复数的几何意义,考查复数对应的点所在的象限,解题的关键就是利用复数的四则运算将复数表示为一般形式,考查计算能力,属于基础题.9、C【解析】利用对数函数的单调性对集合化简得x|0 x1,然后求出AB即可【详解】x|0 x2,AB1,故选:C【点睛】考查对数不等式的解法,以及集合的交集及其运算10、D【解析】根据所给的这组数据,取出这组数据的样本中心点,把样本中心点代入所给的四个选项中验证,若能够成立的只有一个,这一个就是线性回归方程【详解】 这组数据的样本中心点是 把样本中心点代
11、入四个选项中,只有成立,故选D 【点睛】本题考查求线性回归方程,一般情况下是一个运算量比较大的问题,解题时注意平均数的运算不要出错,注意系数的求法,运算时要细心,但是对于一个选择题,还有它特殊的加法11、C【解析】由题意知,、三条直线两两相互垂直,构建如图所示的边长为1的正方体,斜边以直线为旋转轴,则点保持不变,点的运动轨迹是以为圆心,1为半径的圆,以坐标原点,以为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出结果【详解】解:由题意知,、三条直线两两相互垂直,画出图形如图,不妨设图中所示正方体边长为1,故,斜边以直线为旋转轴,则点保持不变,点的运动轨迹是以为圆心,1为半径的圆,以坐标原点
12、,以为轴,为轴,为轴,建立空间直角坐标系,则,0,0,直线的方向单位向量,1,直线的方向单位向量,0,设点在运动过程中的坐标中的坐标,其中为与的夹角,在运动过程中的向量,设与所成夹角为,则,正确,错误设与所成夹角为,当与夹角为时,即,此时与的夹角为,正确,错误故选:【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,属于中档题12、C【解析】分析:由题设条件将点P到平面ABC距离与到点V的距离相等转化成在面VBC中点P到V的距离与到定直线BC的距离比是一个常数,依据圆锥曲线的第二定义判
13、断出其轨迹的形状详解:正四面体VABC面VBC不垂直面ABC,过P作PD面ABC于D,过D作DHBC于H,连接PH,可得BC面DPH,所以BCPH,故PHD为二面角VBCA的平面角令其为则RtPGH中,|PD|:|PH|=sin(为VBCA的二面角的大小)又点P到平面ABC距离与到点V的距离相等,即|PV|=|PD|PV|:|PH|=sin1,即在平面VBC中,点P到定点V的距离与定直线BC的距离之比是一个常数sin,又在正四面体VABC,VBCA的二面角的大小有:sin=1,由椭圆定义知P点轨迹为椭圆在面SBC内的一部分故答案为:C点睛:(1)本题主要考查二面角、椭圆的定义、轨迹方程等基础知
14、识,考查运算求解能力,考查数形结合思想、化归与转化思想(2)解答本题的关键是联想到圆锥曲线的第二定义.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】因为点P是曲线上任意一点,则点P到直线的距离的最小值是过点P的切线与直线平行的时候,则,即点(1,1)那么可知两平行线间的距离即点(1,1)到直线的距离为14、【解析】首先求出x,y的平均数,根据样本中心点满足线性回归方程,把样本中心点代入,得到关于a的一元一次方程,解方程即可【详解】:(1+2+3+4)2.5,(4.5+4+3+2.5)3.5,将(2.5,3.5)代入线性回归直线方程是0.7x+a,可得3.51.75+a,故a故答
15、案为【点睛】本题考查回归分析,考查样本中心点满足回归直线的方程,考查求一组数据的平均数,是基础题15、40【解析】根据前项和公式,结合已知条件列式求得的值.【详解】依题意.【点睛】本小题主要考查等差数列前项和公式,属于基础题.16、【解析】根据偶函数性质得出在上是减函数,由此可得不等式【详解】是偶函数,且在上是增函数,在上是减函数,又,解得且故答案为【点睛】本题考查函数的奇偶性与单调性,由奇偶性和单调性结合起来解函数不等式,这种问题一类针对偶函数,一类针对奇函数,它们有固定的解题格式如偶函数在上是增函数,可转化为,奇函数在上是增函数,首先把不等式转化为再转化为三、解答题:共70分。解答应写出文
16、字说明、证明过程或演算步骤。17、(1),;(2)【解析】试题分析:(1)利用等差数列,等比数列的通项公式先求得公差和公比,即得到结论;(2)利用分组求和法,由等差数列及等比数列的前n项和公式即可求得数列前n项和试题解析:()设等差数列an的公差为d,由题意得d= 1an=a1+(n1)d=1n设等比数列bnan的公比为q,则q1=8,q=2,bnan=(b1a1)qn1=2n1, bn=1n+2n1()由()知bn=1n+2n1, 数列1n的前n项和为n(n+1),数列2n1的前n项和为1= 2n1,数列bn的前n项和为;考点:1.等差数列性质的综合应用;2.等比数列性质的综合应用;1.数列
17、求和18、(1)或;(2)【解析】分析:(1)由,可得若恒成立,只需,从而可得结果;(2)使成立等价于,成立,利用基本不等式求出的最小值为,从而可得结果.详解:(1),若恒成立,需,即或,解得或.(2),当时,即,成立,由,(当且仅当等号成立),.又知,的取值范围是.点睛:本题主要考基本不等式求最值以及不等式恒成立问题,属于难题不等式恒成立问题常见方法: 分离参数恒成立(即可)或恒成立(即可); 数形结合(图象在上方即可); 讨论最值或恒成立; 讨论参数.本题是利用方法 求得的最大值.19、 (1);(2) 【解析】(1)消去直线参数方程的参数,求得直线的普通方程.消去曲线参数方程的参数,求得
18、曲线的普通方程,联立直线和曲线的方程求得交点的坐标,再根据两点间的距离公式求得.(2)根据坐标变换求得曲线的参数方程,由此设出点坐标,利用点到直线距离公式列式,结合三角函数最值的求法,求得到直线的距离的最大值.【详解】(1)的普通方程为,的普通方程为,联立方程组,解得交点为,所以=; (2)曲线:(为参数)设所求的点为,则到直线的距离.当时,取得最大值【点睛】本小题主要考查参数方程化为普通方程,考查直线和圆相交所得弦长的求法,考查坐标变换以及点到直线距离公式,还考查了三角函数最值的求法,属于中档题.20、(1);(2)【解析】(1)利用同角三角函数的基本关系求出,再由正弦定理求出,即可得解;(
19、2)首先由两角和的正弦公式求出,过作交于点,在中,即可求出;【详解】解:(1)因为且,由正弦定理可得,即解得,因为,(2)如图,过作交于点,在中如图所示,在中,故边上的高为【点睛】本题考查同角三角函数的基本关系,正弦定理解三角形以及三角恒等变换的应用,属于中档题.21、(1)36;(2)()81;()19【解析】(1)当定义域有4个元素,值域有3个元素,把4个元素分成2,1,1的三组,再对应值域里的3个元素,有;(2)()分值域有1个元素,2个元素,3个元素,讨论函数个数;()满足条件的有0,0,2,2或0,1,1,2或1,1,1,1三类,分三类求满足条件的函数个数.【详解】(1)函数的定义域是,值域是 定义域里有2个数对着值域里面一个数,另外两个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汝州政协议书程
- 面授协议书班和网络协议书班
- 企业超龄人员合同(标准版)
- 南京市政府协议书采购
- 卖房尾款协议书
- 三菱串口通讯协议书
- 2025至2030新能源汽车驾驶员行业调研及市场前景预测评估报告
- 2025设备租赁合同的模板版本
- 2025技术研发委托合同汇编
- 非证券从业考试及答案解析
- 细菌性痢疾防控指南
- 2025-2030中国城市土地混合使用政策创新与实践评估报告
- 国企顾问管理办法
- 电气五防操作培训课件
- 学堂在线 研究生学术与职业素养讲座 章节测试答案
- WMT8-2022二手乘用车出口质量要求
- 评估公司奖罚管理制度
- 水利工程合同管理制度
- 初三第一次月考家长会课件
- 借车风险责任协议书
- 装饰装修监理实施细则
评论
0/150
提交评论