




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高三数学三角函数导学活动单PAGE 7函数yAsin(x)的图象及应用第5节函数yAsin(x)的图象及应用考试要求1.结合具体实例,了解yAsin(x)的实际意义;能借助图象理解参数,A的意义,了解参数的变化对函数图象的影响;2.会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模型.知 识 梳 理1.用“五点法”画yAsin(x)(A0,0,|0,0)的变换:向左平移eq f(,)个单位长度而非个单位长度.自主检测1.判断下列结论的正误.(在括号内打“”或“”)(1)将函数y3sin 2x的图象左移eq f(,4)个单位长度后所得图象的解析式是y3sin.()(
2、2)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.()(3)函数yAcos(x)的最小正周期为T,那么函数图象的两个相邻对称中心之间的距离为eq f(T,2).()(4)由图象求解析式时,振幅A的大小是由一个周期内图象中最高点的值与最低点的值确定的.()2.为了得到函数ysin的图象,只需把函数ysin 2x图象上所有的点()A.向左平移eq f(,3)个单位长度 B.向右平移eq f(,3)个单位长度C.向左平移eq f(,6)个单位长度 D.向右平移eq f(,6)个单位长度3.如图所示,某地夏天从814时的用电量变化曲线近似满足函数yAsin(x)b.则这段曲
3、线的函数解析式为_.4.将曲线C1:y2cos上的点向右平移eq f(,6)个单位长度,再将各点横坐标缩短为原来的eq f(1,2),纵坐标不变,得到曲线C2,则C2的方程为()A.y2sin4x B.y2sin C.y2sinx D.y2sin5.ycos(x1)图象上相邻的最高点和最低点之间的距离是_.6.已知函数f(x)Asin(x)(A0,0,|0)个单位长度,得到yg(x)的图象.若yg(x)图象的一个对称中心为,求的最小值.变式1:(1)(2017全国卷)已知曲线C1:ycos x,C2:ysin,则下面结论正确的是()A.把C1上各点横坐标伸长到原来2倍,纵坐标不变,再把得到的曲
4、线向右平移eq f(,6)个单位长度,得到曲线C2B.把C1上各点横坐标伸长到原来2倍,纵坐标不变,再把得到的曲线向左平移eq f(,12)个单位长度,得到曲线C2C.把C1上各点横坐标缩短到原来eq f(1,2)倍,纵坐标不变,再把得到的曲线向右平移eq f(,6)个单位长度,得到曲线C2D.把C1上各点横坐标缩短到原来eq f(1,2)倍,纵坐标不变,再把得到的曲线向左平移eq f(,12)个单位长度,得到曲线C2(2)若把函数ysin的图象向左平移eq f(,3)个单位长度,所得到的图象与函数ycosx的图象重合,则的一个可能取值是()A.2 B.eq f(3,2) C.eq f(2,3
5、) D.eq f(1,2)考点二由图象求函数yAsin(x)的解析式【例2】 (1)函数f(x)sin(x)的部分图象如图所示,已知A,B,则f(x)图象的对称中心为()A.(kZ) B.(kZ) C.(kZ) D.(kZ)(2)(2020徐州模拟)函数f(x)Asin(x)(A0,0,02)的部分图象如图所示,则f(2 019)的值为_.变式2:(1)某地一天614时的温度变化曲线近似满足函数yAsin(x)b(|0)的图象向左平移个单位,所得的部分函数图象如图所示,则的值为()A.eq f(,6) B.eq f(5,6) C.eq f(,12) D.eq f(5,12)考点三三角函数图象、
6、性质的综合应用角度1图象与性质的综合问题【例31】已知函数f(x)sin(x)的图象相邻的两个对称中心之间的距离为eq f(,2),若将函数f(x)的图象向左平移eq f(,6)个单位长度后得到偶函数g(x)的图象,则函数f(x)的一个单调递减区间为()A.eq blcrc(avs4alco1(f(,3),f(,6) B.eq blcrc(avs4alco1(f(,4),f(7,12) C.eq blcrc(avs4alco1(0,f(,3) D.eq blcrc(avs4alco1(f(,2),f(5,6)角度2三角函数的零点(方程的根)问题【例32】 已知关于x的方程2sin2xeq r(
7、3)sin 2xm10在上有两个不同的实数根,则m的取值范围是_.角度3三角函数模型的应用【例33】 如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O离地面1米,点O在地面上的射影为A.风车圆周上一点M从最低点O开始,逆时针方向旋转40秒后到达P点,则点P到地面的距离是_米.变式3:(1)已知函数f(x)Asin(x)(A0,0,|0)满足f(0)f,且函数在上有且只有一个零点,则f(x)的最小正周期为_.素养达成类型1三角函数的周期T与的关系【例1】 为了使函数ysin x(0)在区间0,1上至少出现50次最大值,则的最小值为()A.98 B.eq f(197,2) C.eq f(
8、199,2) D.100类型2三角函数的单调性与的关系【例2】 若函数f(x)sin x(0)在区间上单调递减,则的取值范围是()A. B. C. D.类型3三角函数的对称性、最值与的关系【例3】 (1)(2020枣庄模拟)已知f(x)sinxcosx,若函数f(x)图象的任何一条对称轴与x轴交点的横坐标都不属于区间(,2),则的取值范围是_.(结果用区间表示)(2)已知函数f(x)2sin x在区间上的最小值为2,则的取值范围是_.当堂检测和补充训练1.(2019蚌埠质检)将函数f(x)sin xcos x的图象上各点的纵坐标不变,横坐标缩小为原来的eq f(1,2),再将函数图象向左平移e
9、q f(,3)个单位后,得到的函数g(x)的解析式为()A.g(x)eq r(2)sin B.g(x)eq r(2)sinC.g(x)eq r(2)sin D.g(x)eq r(2)sin2.函数yAsin(x)的部分图象如图所示,则()A.y2sin B.y2sinC.y2sin D.y2sin3.在平面直角坐标系xOy中,将函数f(x)sin的图象向左平移(0)个单位后得到的图象经过原点,则的最小值为()A.eq f(,3) B.eq f(,4) C.eq f(,6) D.eq f(,12)4.(多选题)已知f(x)Asin(x)B的部分图象如图,则f(x)图象的一个对称中心是()A. B
10、. C. D.5.将函数f(x)eq r(3)sin 2xcos 2x的图象向左平移t(t0)个单位后,得到函数g(x)的图象,若g(x)g,则实数t的最小值为()A.eq f(5,24) B.eq f(7,24) C.eq f(5,12) D.eq f(7,12)6.(2020烟台模拟)将函数f(x)sin2xeq r(3)cos2x1的图象向右平移eq f(,6)个单位长度后得到函数g(x)的图象,当a(0,1)时,方程|g(x)|a在区间0,2上所有根的和为()A.6 B.8 C.10 D.127.(多选题)将函数f(x)的图象向右平移eq f(,6)个单位长度,再将所得函数图象上的所有
11、点的横坐标缩短到原来的eq f(2,3),得到函数g(x)Asin(x)的图象.已知函数g(x)的部分图象如图所示,则下列关于函数f(x)的说法正确的是()A.f(x)的最小正周期为,最大值为2 B.f(x)的图象关于点中心对称C.f(x)的图象关于直线xeq f(,6)对称 D.f(x)在区间上单调递减8.将函数ysin x的图象上所有的点向右平移eq f(,10)个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是_.9.已知函数f(x)eq r(3)sin(x)的图象关于直线xeq f(,3)对称,且图象上相邻最高点的距离为.(1)求f的值;(2)将函数yf(x)的图象向右平移eq f(,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 无刷直流电机调速控制系统设计方案毕业论文
- 25年公司级员工安全培训考试试题及参考答案(典型题)
- 2025日常安全培训考试试题附答案(B卷)
- 2025年国际商业代理合同范本
- 2025实习协议、就业协议和劳动合同的区别与选择
- 2025关于建设局《合同价款结算管理》和《合同变更与索赔管理》及
- 2025起重机械租赁合同
- 2025年院线经营项目建议书
- 2025网站信息会员信息服务合同书样本
- 2025广告公司收购合同范本
- 大学生职业规划大赛《运动康复专业》生涯发展展示
- 外研版(三起)(2024)三年级下册英语Unit 2 单元测试卷(含答案)
- 国开(内蒙古)2024年《创新创业教育基础》形考任务1-3终考任务答案
- 体育心理学(第三版)课件第八章运动技能的学习
- 深信服SDWAN产品介绍
- JT∕T 1431.3-2022 公路机电设施用电设备能效等级及评定方法 第3部分:公路隧道照明系统
- 行政事业单位公务卡使用管理办法模板
- 五年级奥数教程
- 针刺伤的预防及处理(课堂PPT)
- 湿式报警阀阀门强度和严密性试验记录
- MATLAB中的abc-dq相坐标变换
评论
0/150
提交评论