《排列》公开课课件_第1页
《排列》公开课课件_第2页
《排列》公开课课件_第3页
《排列》公开课课件_第4页
《排列》公开课课件_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、排列公开课课件排列公开课课件引例 问题1 从甲、乙、丙3名同学中选出2名参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的方法? 第1步,确定参加上午活动的同学,从3人中任选1人有3种方法; 第2步,确定参加下午活动的同学,只能从余下的2人中选,有2种方法 根据分步计数原理,共有:326 种不同的方法解决这个问题,需分2个步骤:引例 问题1 从甲、乙、丙3名同学中选引例 问题1 从甲、乙、丙3名同学中选出2名参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的方法?引例 问题1 从甲、乙、丙3名同学中选 问题2 从a、b、c

2、、d这四个字母中,取出3个按照顺序排成一列,共有多少种不同的挑法? 引例根据分步计数原理,共有:43224种不同的排法 解决这个问题,需分3个步骤: 第1步,先确定左边的字母,在4个字母中任取1个,有4种方法; 第2步,确定中间的字母,从余下的3个字母中去取,有3种方法; 第3步,确定右边的字母,只能从余下的2个字母中去取,有2种方法 问题2 从a、b、c、d这四个字母中,取出3个 问题2 从a、b、c、d这四个字母中,取出3个按照顺序排成一列,共有多少种不同的挑法? 引例 由此可以写出所有的排列:abc abd acb acdadb adc bac badbca bcd bda bdccab

3、 cad cba cbdcda cdb dab dacdba dbc dca dcb 问题2 从a、b、c、d这四个字母中,取出3个 一般地,从n个不同元素中取出m(mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列 排列的定义中包含两个基本内容: 一是“取出元素”;二是“按照一定顺序排列”“一定顺序”就是与位置有关,这也是判断一个问题是不是排列问题的重要标志 根据排列的定义,两个排列相同,当且仅当这两个排列的元素完全相同,而且元素的排列顺序也完全相同排列定义 如果两个排列所含的元素不完全一样,那么就可以肯定是不同的排列;如果两个排列所含的元素完全一样,但摆的顺序

4、不同,那么也是不同的排列 一般地,从n个不同元素中取出m(mn)个元素,按照例题 写出从a、b、c三个元素中取出两个元素的全部排列 解:所有排列是: ab ac bc ba ca cb例题例题 写出从a、b、c三个元素中取出两个元素的全部排列 北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同的机票?试写出所有情况起点站终点站飞机票北京上海广州上海广州北京广州北京上海北京上海北京广州上海北京上海广州广州北京广州上海讨论题 北京、上海、广州三个民航站之间的直达航线,需 由数字1,2,3,4可以组成多少个没有重复数字的三位数?讨论题点击图片进入flash动画演示,点击空白处进入幻灯片演示

5、跳过下一页 由数字1,2,3,4可以组成多少个没有重复数 由数字1,2,3,4可以组成多少个没有重复数字的三位数?1 1 21 41 31 2 31 2 41 3 21 3 41 4 21 4 333 13 23 43 1 23 1 43 2 13 2 43 4 13 4 222 12 32 42 1 32 1 42 3 12 3 42 4 12 4 344 14 24 34 1 24 1 34 2 14 2 34 3 14 3 2讨论题 由数字1,2,3,4可以组成多少个没有重复数 练习1下列问题中哪些是排列问题?如果是在题后括号内打“”,否则打“”牛刀小试 (1)20位同学互通一封信,问共

6、通多少封信? ( ) (2)20位同学互通一次电话,问共通多少次? ( ) (3)20位同学互相握一次手,问共握手多少次? ( ) (4)从e,5,7,10五个数中任意取出2个数作为对数的底数与真数,问共有几种不同的对数值? ( ) (5)以圆上的10个点为端点,共可作多少条弦? ( ) (6)以圆上的10个点为起点,且过其中另一个点的射线共可作多少条? ( ) 练习1下列问题中哪些是排列问题?如果是在题 从n个不同元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记作 注意区别“一个排列”与“排列数”的不同: “一个排列”是指“从n个不同元素中,任取m个元

7、素按照一定的顺序排成一列”,不是数; “排列数”是指“从n个不同元素中取出m个元素的所有排列的个数”,是一个数因此符号只代表排列数,而不表示具体的排列 排列数的定义 注意区别“一个排列”与“排列数”的不同:排列数的定义排列数公式的推导求排列数 :假定有排好顺序的m个空位,从n 个不同元素 中任意取m个去填空,一个空位填一个元素,每一种填法就对应一个排列,因此,所有的不同填法的种数就是排列数 。 第1位 第2位 第3位 第m位 n n-1 n-2 n-m+1排列数公式的推导求排列数 :假定有排好顺序的 排列数公式 这里m、n 且mn,这个公式叫做排列数公式它有以下三个特点:(1)第一个因数是n,

8、后面每一个因数比它前面一个因数少1(2)最后一个因数是nm1(3)共有m个因数正整数1到n的连乘积,叫做n的阶乘,用n! 表示。当m=n时 排列数公式 这里m、n 练习2在A、B、C、D四位候选人中,选举正、副班长各一人,共有几种不同的选法?写出所有可能的选举结果练习 解:选举过程可以分为两个步骤 第1步选正班长,4人中任何一人可以当选,有4种选法; 第2步选副班长,余下的3人中任一人都可以当选,有3种选法 根据分步计数原理,不同的选法有: 4 312(种)其选举结果是: AB AC AD BC BD CD BA CA DA CB DB DC 练习2在A、B、C、D四位候选人中,选举正1、 一

9、般地说,从 n 个不同元素中,任取 m (mn) 个元素,按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列。2、排列数公式: 从 n 个不同元素中取出 m (mn) 个元素的所有排列的个数,叫做从 n 个不同元素中取出 m 个元素的排列数,用符号 表示。小 结1、 一般地说,从 n 个不同元素中,任取 m (mn) 3 2 1!规定 0!=1 3 2 1!规定 0!=1练习:1.判断下列问题是否是排列(1).由1,2,3三个数字组成无重复数字的三位数.(2).从40名同学中选5人分别担任正、副班长、学习委员、体育委员、文娱委员.(3)从7名同学中选3人去参加一 个会议

10、(4)从6名同学中选4人参加4*100m接力赛.(5)两个人互相握手.练习:例1、某年全国足球甲级(A組)联赛共14队参加,每队都 要与其余各队在主、客场分别比赛1 次,共进行多少场比赛?例2 :信号兵用了3种不同颜色的旗子个一面每次打出3面最多能打出不同的信号有多少种?例1、某年全国足球甲级(A組)联例2 :信号兵用了3种不同颜例3(l)有5本不同的书,从中选3本送给3名同学,每人1本,共有多少种不同送法?(2)有5种不同的书,要买3本送给3名同学,每人1本,共有多少种不同的送法?解:(l)从5本不同的书中选出3本分别送给3名同学,对应于从5个元素中任取3个元素的一个排列,因此不同的送法种数

11、是(2)由于有5种不同的书,送给每个同学的书都有5种不同的方法,因此送给3名同学每人1本书的不同方法的种数是555125注意体会这两小题的区别例3(l)有5本不同的书,从中选3本送给3名同学,每人1本,例4、某信号兵用红、黄、蓝三面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂一面、二面或三面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?分析:信号可分三类: 用一面旗的有 用二面旗的有 用三面旗的有 故共可作信号: A31A32A33A31A32A33+=15例4、某信号兵用红、黄、蓝三面旗分析:信号可分三类:A31A例5、用 0 到 9 这十个数字,可以组成多少个没有重复数

12、字的三位数?法一 百位十位个位例5、用 0 到 9 这十个数字,可以组成多少个没有重复数字百位十位个位0百位十位个位0百位十位个位根据加法原理解法二:对排列方法分类思考。 符合条件的三位数可分为两类:百位十位个位0百位十位个位0百位十位个位根据加法原理解法二:解法三:间接法. 从0到9这十个数字中任取三个数字的排列数为 , 其中以0为排头的排列数为 . 所求的三位数的个数是解法三:间接法. 从0到9这十个数字中任取三个练习1:用0-9这10个数可以组成多少个没有重复的五位数. 五位奇数.大于30000的五位偶数.A91A94A51A81A8327A83+3 6 A832:在3000与8000之

13、间有多少个没有数字重复,能被5整除的奇数.有多少个没有重复的奇数. A41A822A51A82+A31A41A82练习1:用0-9这10个数可以组成多少A91A94A51例6:10名同学排成一列,其中有5名男同学5名女同学(1)女生都排在一起,有几种排法?(2)女生和男生相间,有几种排法?(3)任何两个男生都不相邻,有几种排法?(4)5名男生不排在一起,有几种排法?(5)男生甲和男生乙中间必须排而且只能排2个女生,女生又不能排队伍两端,有几种排法?A66A552A55A55A55A65A1010-A55A66A52A22A42A55例6:10名同学排成一列,其中有5名男同学A66A552A5练习(1)有5个歌唱节目,4个舞蹈节目任何两个舞蹈不相邻,有几种不同的方法?歌舞间隔有几种不同的排法?A64A55A44A55(2)6名同学站成一排有多少种不同的站法.甲在乙的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论